
BlackBerry Software
Development Kit
Version 2.5

Desktop API Reference Guide

BlackBerry Software Development Kit Version 2.5 Desktop API Reference Guide
Last revised: 25 June 2002

Part number: PDF-04955-001

At the time of publication, this document complies with the BlackBerry Desktop Manager version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, �Always On, Always Connected�, the �envelope in motion� symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers. There are no warranties, express or implied,
with respect to the content of this document.

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Published in Canada

Contents

About this guide.. 5

CHAPTER 1 Getting started .. 7
Writing a desktop add-in..7

Sample application ...8
Registration..8
Enabling Desktop Manager add-ins ..8

CHAPTER 2 Extension API reference ... 11
RIM Extension API ..11

CHAPTER 3 Desktop API reference .. 15
Desktop API interfaces..16

IRimDatabaseAccess ..17
IRimTables...17
IRimTable...18
IRimRecords ..20
IRimRecord..22
IRimFields..24
IRimField ...27
IRimProgress ...28
IRimLogger..30
IRimUtility...32

About this guide

This document explains how to use the BlackBerry Desktop
application programming interface (API) to extend the BlackBerry
Desktop Manager synchronization feature to access or modify
custom application databases on users� handhelds.

This document contains the following information:

� overview of the API and its capabilities

� detailed reference of API members

This version of the Desktop API is compatible with the BlackBerry
Desktop Manager version 2.5. You can use this API with custom C++
applications written using the BlackBerry Software Development Kit
version 2.5.

About this guide

6 BlackBerry Software Development Kit

Chapter 1
Getting started

The BlackBerry Software Development Kit enables you to write a
Component Object Model (COM) object that extends the BlackBerry
Desktop Manager. This enables you to access and modify custom
application databases on users� handhelds.

Writing a desktop add-in
To add an extension to the BlackBerry Desktop Manager, you create a
COM component by implementing the IRimExtension interface
described in RimExtension.idl.You can write a COM object in
several languages, such as C/C++ or Visual Basic. The examples
provided in this guide are in C++.

Your application can import desktopapi.tlb. This compiled type
library generates wrapper code that makes writing your application
much easier.

Custom message handling

Chapter 1: Getting started

8 BlackBerry Software Development Kit

Sample application
For an example of how to use the Desktop API, refer to the DesktopSample application
included with the BlackBerry SDK in App_samples\Desktop. This sample application
writes changes to a simple contacts database on the handheld to an XML file on the
desktop, ContactList.xml.

This sample application was created using the Microsoft Visual Studio ALT COM
AppWizard project type. When you use this wizard to create your project, Microsoft
Visual Studio automatically adds the appropriate post-build step to register your
compiled DLL with the system (to see this, right-click the project, choose Settings,
and then click the Custom Build tab).

Registration
Desktop add-in applications must implement the IRimExtension interface. When the
application is installed, it registers its object with the system. If you create your project
using Microsoft Visual Studio, registration is automatically done as a post-build step
after compiling.

Your application must register itself as implementing the following ID:
DFCE97AB-25ED-4335-BB00-FE5863F41DED. This desktop add-in ID is noted in the
RimExtension.idl file. Microsoft Visual Studio creates an .rgs registration file for
your project, as shown in the desktop sample application. To provide the appropriate
registration information, you must add the following block to the .rgs file:

'Implemented Categories'
{

{DFCE97AB-25ED-4335-BB00-FE5863F41DED}
}

When the BlackBerry Desktop Manager starts, it finds desktop add-ins by retrieving
the class IDs for registered objects that implement the desktop add-in category.

Enabling Desktop Manager add-ins
This section describes the steps that users must perform to enable add-ins in the
BlackBerry Desktop Manager.

1. In the BlackBerry Desktop Manager, click the Intellisync icon to configure
synchronization with their handheld. The Intellisync window appears.

Note: The Desktop sample application included with the Desktop API requires Internet
Explorer 6 for some of the XML parsing that is performs.

Writing a desktop add-in

Desktop API Reference Guide 9

BlackBerry Desktop Manager Intellisync window

2. In the Synchronize now section, select Execute Add-in actions to include add-ins
in the synchronization process.

3. In the Configuration section, click Configure Add-ins. The Add-in Module
Configuration window appears.

BlackBerry Desktop Manager Add-in Module Configuration

Users must select each add-in to enable it. When users then click Configure, your
add-in can provide its additional configuration options. This is available if you
include the <hasconfiguration>true</hasconfiguration> tag in the extension
information for your add-in (refer to page 11).

Chapter 1: Getting started

10 BlackBerry Software Development Kit

Chapter 2
Extension API
reference

This chapter provides a detailed description of the RIM Extension
API. This API provides the plug-in to the BlackBerry Desktop
Manager.

RIM Extension API
The RIM Extension API contains a single interface, IRimExtension,
which implements IDispatch. Each desktop add-in must implement
this interface.

IRimExtension contains the following functions.

GetExtensionInfo

The GetExtensionInfo function retrieves an XML document that
provides information for registration with the BlackBerry Desktop
Manager.

HRESULT GetExtensionInfo([in, out] BSTR* extensionInfo)

Description The following is an example of an extension information document:

<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<extensioninfo version="1.0">

<vendorname>Research In Motion Limited </vendorname>
<vendorversion>1.0</vendorversion>

Parameters extensionInfo A pointer to an XML document with
registration information.

Chapter 2: Extension API reference

12 BlackBerry Software Development Kit

<path>C:\\Program Files\\Research In Motion\\BlackBerry
SDK 2.5.0\\Desktop</path>

<description>A RIM Desktop Extension API Contacts Sample</description>
<displayname>Contacts Sample</displayname>
<hasconfiguration>true</hasconfiguration>
<access>

<database>Contacts</database>
</access>

</extensioninfo>

The <hasconfiguration>true</hasconfiguration> tag is required if your desktop
add-in provides additional configuration options for the user. This enables the
Configure button for the add-in in the Add-in Module Configuration window (refer
to page 8).

The DesktopSample application included with the BlackBerry SDK provides an
example of creating the XML registration information as a string:

HRESULT __stdcall CDesktopSample::raw_GetExtensionInfo (
BSTR * extensionInfo)

{
::SysReAllocString(extensionInfo, L"<?xml version=\"1.0\"

encoding=\"UTF-8\" ?><extensioninfo version=\"1.0.0\">"
L"<vendorname>Rim</vendorname>"
L"<vendorversion>1.0</vendorversion>"
L"<path>C:\\Program Files\\Research In Motion\\BlackBerry SDK

2.5.0\\Desktop</path>"
L"<description>A Rim Desktop Extension API

Sample</description><displayname>Rim Desktop Contacts
Sample</displayname>"

L"<clsid>{7C23B673-FB1D-45D8-83BE-390398BA9876}</clsid>"
L"<access><database>Contacts</database></access>"
L"</extensioninfo>"); //the L token unicodes this string

return 0;
}

Process

The Process function is called by the BlackBerry Desktop Manager when
synchronization occurs. References to an IRimUtility and IRimDatabaseAccess
object are passed to the add-in.

HRESULT Process(
[in] IRimUtility* pRimUtility,
[in] IRimDatabaseAccess* pRimDeviceAccess)

Parameters pRimUtility A pointer to an IRimUtility object (refer to page 32).

pRimDeviceAccess A pointer to an IRimDatabaseAccess object, which
provides access to a database on the handheld.

RIM Extension API

Desktop API Reference Guide 13

See also IRimDatabaseAccess (refer to page 17)

Chapter 2: Extension API reference

14 BlackBerry Software Development Kit

Configure

This function is called by the BlackBerry Desktop Manager when the user clicks the
Configure button for an add-in in the Add-in Module Configuration window.

HRESULT Configure(
[in] IRimUtility* pRimUtility,
[in] long hWnd);

Description This function is only called if the <hasconfiguration>true</hasconfiguration> tag
was included in extensionInfo (refer to page 12).

See also IRimUtility (refer to page 32)

GetErrorString

Retrieves the descriptive text associated with an error code.

HRESULT GetErrorString(
[in] int errorCode,
[in, out] BSTR* extensionInfo);

Description The BlackBerry Desktop Manager calls the GetErrorString function if the Process()
function returns an error that is marked as interface-specific (the facility code for
HRESULT is FACILITY_ITF). This means that a description can be retrieved if a desktop
add-in returns an error code specific to it. The returned string can be empty.

Parameters pRimUtility A pointer to an IRimUtility object (refer to page 32)

hWnd Handle to the parent window that is calling the Configure
function.

Parameters errorCode This parameter specifies an error code.

extensionInfo This parameter is used to return the error message text.

Chapter 3
Desktop API
reference

This chapter provides a detailed description of the BlackBerry
Desktop API. This API is defined in the RimDesktopApi.idl file.

Chapter 3: Desktop API reference

16 BlackBerry Software Development Kit

Desktop API interfaces
The following diagram illustrates the relationship of interfaces in the Desktop API
that provide access to record databases. In addition, several utility interfaces are
provided to display a progress indicator, generate logs, and retrieve handheld
information.

Desktop API Interfaces

Desktop API interfaces

Desktop API Reference Guide 17

IRimDatabaseAccess
The IRimDatabaseAccess interface implements IDispatch. It contains the following
property.

Tables

Read-only property for a collection of tables.

HRESULT Tables([out, retval] IRimTables* *pVal)

IRimTables
The IRimTables interface implements IDispatch. It represents a read-only collection
of record tables requested in the <access> block of extensionInfo (refer to page 11).

Count

Read-only property for the number of tables in the table collection.

HRESULT Count([out, retval] long *pVal);

_NewEnum

Read-only property for a new enumeration of tables.

HRESULT _NewEnum([out, retval] IUnknown** pVal);

Description This function enables you to enumerate a list of items when writing scripting
interfaces.

Item

Read-only property for a table from the collection.

HRESULT Item([in] VARIANT var, [out, retval] IRimTable** pVal);

Parameters pVal Returns a pointer to a table collection.

Parameters pVal Returns the number of tables in the collection.

Parameters pVal Returns a pointer to the new enumeration.

Parameters var Specify a BSTR to retrieve the table by name or a long to
retrieve the table by its index. The index value for Item is
1-based.

pVal Returns a pointer to an IRimTable object.

Chapter 3: Desktop API reference

18 BlackBerry Software Development Kit

IRimTable
The IRimTable interface implements IDispatch. It contains the following functions
for accessing and setting record table properties.

Id

Read-only property for the unique identifier (ID) of the table.

HRESULT Id([out, retval] short *pVal);

RecordCount

Read-only property for the number of records in a table.

HRESULT RecordCount([out, retval] long *pVal);

Version

Read and write property for the table version.

HRESULT Version([out, retval] short *pVal);
HRESULT Version([in] short newVal);

Name

Read-only property for the table name.

HRESULT Name([out, retval] BSTR *pVal);

Parameters pVal Returns the table ID.

Parameters pVal Returns the number of records in a table.

Parameters pVal Returns the current table version number.

newVal Sets a new version number for the table.

Parameters pVal Returns the descriptive name of the table.

Desktop API interfaces

Desktop API Reference Guide 19

LoadRecords

Function to retrieve the records collection from the handheld.

HRESULT LoadRecords([in] eRIM_Mode mode,
[out, retval] IRimRecords * *pVal);

Update

Function to write any changes to the handheld for records in this table; this is a bulk
update.

HRESULT Update();

Clear

Function to delete all records on the handheld for this table.

HRESULT Clear();

Parameters mode Specifies the appropriate action; one of the following
values:
� RIM_Mode_Read � retrieves records from the handheld

in read-only mode
� RIM_Mode_Write � returns an empty records collection

to which you can add a record; does not read any
records from the handheld

� RIM_Mode_ReadWrite — retrieves records from the
handheld with read/write permission

� RIM_Mode_Summary — retrieves only record summaries; must
be used in conjuction with RIM_Mode_Read

� RIM_Mode_All � retrieves record summaries from the
handheld with read and write permissions

pVal Returns a pointer to the records collection that has been
retrieved from the handheld.

Chapter 3: Desktop API reference

20 BlackBerry Software Development Kit

IRimRecords
The IRimRecords interface implements IDispatch. It contains the following functions
to access and to set record collections. You cannot create record objects directly; the
functions in IRimRecords pass references to records.

Count

Property for the number of records in a table.

HRESULT Count([out, retval] long *pVal);

AddRecord

Function to create a new Record and add it to the table.

HRESULT AddRecord([out, retval] IRimRecord** record);

FindRecord

Function to retrieve a record.

HRESULT FindRecord([in] long id, [out,retval] IRimRecord** record);

_NewEnum

Property for an enumeration of records.

HRESULT _NewEnum([out, retval] IUnknown* *pVal);

Description This function enables you to enumerate a list of items when writing scripting
interfaces.

Parameters pVal Returns the number of records.

Parameters record Returns the record that has been added.

Parameters id Specifies the ID of the record to find.

record Returns a record.

Parameters pVal Returns a new enumeration.

Desktop API interfaces

Desktop API Reference Guide 21

Item

Property for a record in a table.

HRESULT Item([in] long index, [out, retval] IRimRecord* *pVal);

Parameters index Specifies the index of the record to retrieve. The index
is 1-based.

pVal Returns a record.

Chapter 3: Desktop API reference

22 BlackBerry Software Development Kit

IRimRecord
The IRimRecord interface implements IDispatch. It contains the following functions
for retrieving and setting record summary information and accessing record fields
and field collections.

Version

Read and write property for the record version.

HRESULT Version([out, retval] short *pVal);
HRESULT Version([in] short newVal);

RecordID

Read and write property for the record ID.

HRESULT RecordID([out, retval] long *pVal);
HRESULT RecordID([in] long newVal);

Dirty

Property for the �dirty� flag on the current record, which indicates whether or not the
record has changed since it was last saved.

HRESULT Dirty([out, retval] BOOL *pVal);
HRESULT Dirty([in] BOOL newVal);

Parameters pVal Returns the version of the current record.

newVal Specifies a new version for the current record.

Parameters pVal Returns the ID of the current record.

newVal Specifies a new ID for the current record.

Parameters pVal Returns TRUE if the record has changed since it was
saved, otherwise FALSE.

newVal Specifies TRUE to indicate that the record has
changed since it was last saved, or FALSE to indicate
that the record has not changed.

Desktop API interfaces

Desktop API Reference Guide 23

State

Property for the state of the record.

HRESULT State([out, retval] unsigned long *pVal);
HRESULT State([in] unsigned long newVal);

Delete

Property that marks a record for deletion; the record will not be deleted until
Update() is called.

HRESULT Delete([out, retval] BOOL *pVal);
HRESULT Delete([in] BOOL newVal);

Fields

Property for the fields collection in the current record.

HRESULT Fields([out, retval] IRimFields** pVal);

Load

Function to retrieve the actual record from a record summary.

HRESULT Load();

Update

Function to write updates for a record to the handheld.

HRESULT Update([out, retval] long* recordID);

Parameters pVal Returns the state of the record.

newVal Specifies a new state for the record.

Parameters pVal Returns TRUE if the record is marked for deletion;
otherwise FALSE.

newVal Specifies TRUE to mark the record for deletion.

Parameters pVal Returns the fields collection.

Parameters recordID Returns the ID of the record that has been updated.
This is particularly useful for a new record; if no ID is
specified on a new record, then an ID is generated.

Chapter 3: Desktop API reference

24 BlackBerry Software Development Kit

IRimFields
The IRimFields interface implements IDispatch. It provides the following functions
for accessing and setting a collection of fields.

Count

Property for the number of fields in the current record.

HRESULT Count([out, retval] long *pVal);

AddField

Function to create and add a new field to a record.

HRESULT AddField([out, retval] IRimField** field);

Remove

Function to remove a field from the record collection. The field is not removed from
the handheld until the record is updated.

HRESULT Remove([in] VARIANT var)

Clear

Function to remove all fields from a collection.

HRESULT Clear();

Description You must call Update() on the record to remove fields from the handheld.

Parameters pVal Returns the number of fields.

Parameters field Returns the IRimField object that has been added.

Parameters var Specifies the field to remove:
� VT_l4 � long for the index value
� VT_UNKNOWN or VT_DISPATCH � interface reference to an

IRimField as returned by AddField, FindField, or Item.

Desktop API interfaces

Desktop API Reference Guide 25

FindField

Function to find a record field by its field ID.

HRESULT FindField([in] short ID, [out,retval] IRimField** field)

Description When searching for an ID that is used in multiple IRimField objects in the collection,
FindField returns the first object found in the collection with the specified ID. The
same IRimField object is returned on subsequent FindField calls with the same ID.
To iterate through a collection of fields with the same ID, use FindFields.

FindFields

Function to find a collection of record fields with the same ID.

HRESULT FindFields([in] short id, [out, retval] IRimFields** fields)

Description You can use FindFields to retrieve a collection of fields with the same ID and then
iterate through the collection. The following code excerpt demonstrates how to do
this:

IRimFields *pFs;
long count;
pFields->FindFields(1, &pFs);
pFs->get_Count(&count);
for(int i = 1; i <= count; i++)
{

IRimField pF = NULL;
pFs->get_Item(i, &pF);

}

_NewEnum

Property for an enumeration of fields.

HRESULT _NewEnum([out, retval] IUnknown* *pVal)

Description This function enables you to enumerate a list of items when writing scripting
interfaces.

Parameters ID Specifies the ID of the field to find.

field Returns the IRIMField with the specified ID.

Parameters id Specifies the ID of the field to find.

fields Returns the IRIMFields object with the specified ID.

Parameters pVal Returns a new enumeration.

Chapter 3: Desktop API reference

26 BlackBerry Software Development Kit

Item

Property for a Field in the collection.

HRESULT Item([in] long index, [out, retval] IRimField **pVal)

Parameters index Specifies the index of the field to retrieve. The index is
1-based.

pVal Returns the field at the specified index.

Desktop API interfaces

Desktop API Reference Guide 27

IRimField
The IRimField interface implements IDispatch. It contains the following functions
for retrieving and setting database record fields.

Id

Property for the field ID.

HRESULT Id([out, retval] short *pVal);
HRESULT Id([in] short newVal);

value

Property for a field value.

HRESULT value([out, retval] VARIANT *pVal);
HRESULT value([in] VARIANT newVal);

Parameters pVal Returns the field ID.

newVal Sets a new field ID. The valid range is 1 � 255.

Parameters pVal Returns the field value as a one-dimensional, safe
array of unsigned chars.

newVal Sets a new field value. Possible value types are:
� VT_Ul1 | VT_ARRAY � one-dimensional, safe array

of unsigned chars
� VT_BSTR � string value (null terminator is kept)
� VT_l4, VT_Ul4 � signed or unsigned long
� VT_l2, VT_Ul2 � signed or unsigned short
� VT_l1 � signed char

Chapter 3: Desktop API reference

28 BlackBerry Software Development Kit

IRimProgress
The IRimProgress interface implements IDispatch. It contains the following
functions for displaying a progress indicator to the user.

Notify

Displays a progress indicator dialog to the user.

HRESULT Notify(
[in] eRIM_Progress subfunction,
[in] long value1,
[in] long value2);

getParentWindow

Retrieves a handle to the parent window for the desktop add-in application.

HRESULT GetParentWindow([out] long* hWnd);

Parameters subfunction One of the following values:
RIM_Progress_Show
RIM_Progress_Hide
RIM_Progress_Count
RIM_Progress_Pos

value1 Not used if subfunction is RIM_Progress_Show or
RIM_Progress_Hide.
If subfunction is RIM_Progress_Count, value1 is the
maximum number of items that the progress indicator
will handle.
If subfunction is RIM_Progress_Pos, value1 is the
current position.

value2 If subfunction is RIM_Progress_Count, value2 is the
step value for the progress indicator; otherwise, value2
is not used.

Parameters hWnd Returns a handle to the parent window.

Desktop API interfaces

Desktop API Reference Guide 29

SetProgressDlgText

Sets text in a progress dialog to display to the user.

HRESULT SetProgressDlgText([in] eRIM_ProgressText textId, [in] BSTR text);

Parameters textId Specifies whether to set text for the progress dialog title
or message; one of the following values:
RIM_ProgressText_Title
RIM_ProgressText_Msg

text Specifies text to display to the user in a progress dialog.

Chapter 3: Desktop API reference

30 BlackBerry Software Development Kit

IRimLogger
The IRimLogger interface implements IDispatch. It contains the following functions
for generating log messages.

LogStatus

Function to write a message to a log file.

HRESULT LogStatus([in] BSTR msg)

Description When LogStatus is called, the log message is logged if the LogLevel has been set to
any level other than RIM_Logger_None. If the LogLevel is set to RIM_Logger_None, the
function returns success but the message is not logged.

Refer to "LogLevel" on page 31 for more information.

LogDebug

Function to write a message to the debug file.

HRESULT LogDebug([in] eRIM_LogLevel level, [in] int code, [in] BSTR msg);

Description The format for a debug message is: [timestamp]code — message.

The effect of the LogDebug function depends on which LogLevel has been set, and
what value is provided for the level parameter:

� When the LogLevel has been set to RIM_Logger_None, the debug message is not
logged when LogDebug is called.

� When LogLevel has been set to RIM_Logger_Default, the debug message is
logged unless the level parameter is RIM_Logger_None.

� When LogLevel has been set to RIM_Logger_Verbose, the debug message is
logged only if the level parameter is RIM_Logger_Verbose or RIM_Logger_Trace.

� When LogLevel has been set to RIM_Logger_Trace, the debug message is logged
only if the level parameter is RIM_Logger_Trace.

Refer to "LogLevel" on page 31 for more information.

Parameters msg A message to write to the logs.

Parameters level One of the following debug levels:
RIM_Logger_None
RIM_Logger_Default
RIM_Logger_Verbose
RIM_Logger_Trace

code A unique code for the debug message.

msg A debug text message.

Desktop API interfaces

Desktop API Reference Guide 31

LogLevel

Property for the debug log level.

HRESULT LogLevel([out, retval] eRIM_LogLevel *pVal)
HRESULT LogLevel([in] eRIM_LogLevel newVal)

Description The log file is opened with an initial level of RIM_Logger_Default.

Parameters pVal Returns the current log level, one of the following:
RIM_Logger_None
RIM_Logger_Default
RIM_Logger_Verbose
RIM_Logger_Trace

newVal Sets a new log level as one of the following:
RIM_Logger_None
RIM_Logger_Default
RIM_Logger_Verbose
RIM_Logger_Trace

Chapter 3: Desktop API reference

32 BlackBerry Software Development Kit

IRimUtility
The IRimUtility interface implements IDispatch. It contains the following functions
for retrieving handheld properties.

The class implements IRimUtility also implements IRimLogger and IRimProgress,
so you can query the IRimUtility interface to access the others.

DeviceID

Retrieves the PIN of the handheld connected to the computer serial port.

HRESULT DeviceID([out, retval] unsigned long *pVal);

DeviceIDString

Retrieves the PIN, in string format, of the handheld connected to the computer serial
port.

HRESULT DeviceIDString([out, retval] BSTR *pVal);

Parameters pVal Returns the handheld PIN.

Parameters pVal Returns the handheld PIN in string format.

© 2002 Research In Motion Limited
Published in Canada

	Contents
	About this guide
	Getting started
	Writing a desktop add-in
	Sample application
	Registration
	Enabling Desktop Manager add-ins

	Extension API reference
	RIM Extension API
	GetExtensionInfo
	Process
	Configure
	GetErrorString

	Desktop API reference
	Desktop API interfaces
	IRimDatabaseAccess
	Tables

	IRimTables
	Count
	_NewEnum
	Item

	IRimTable
	Id
	Name
	LoadRecords
	Update
	Clear

	IRimRecords
	Count
	AddRecord
	FindRecord
	_NewEnum
	Item

	IRimRecord
	Version
	RecordID
	Dirty
	State
	Delete
	Fields
	Load
	Update

	IRimFields
	Count
	AddField
	Remove
	Clear
	FindField
	FindFields
	_NewEnum
	Item

	IRimField
	Id
	value

	IRimProgress
	Notify
	getParentWindow
	SetProgressDlgText

	IRimLogger
	LogStatus
	LogDebug
	LogLevel

	IRimUtility
	DeviceID
	DeviceIDString

