BlackBerry Software
Development Kit

Version 2.5

System Utilities API Reference Guide

BlackBerry Software Development Kit 2.5 System Utilities API Reference Guide
Last revised: 18 July 2002

Part number: PDF-04804-001
At the time of publication, this documentation complies with RIM Wireless Handheld version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, ‘Always On, Always Connected’, the “envelope in motion” symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers.

Research In Motion Limited
295 Phillip Street

Waterloo, ON N2L 3W8
Canada

Published in Canada

Ccontents

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

ADOUL thiS QUITE.......coii e e e e s e e srae e 3
Related dOCUMENEAIONcoocuviiieeieeeeeeeeeeeeee ettt are e s aaeesaeeesaneas 3

Event LOgger API RETEIENCEooiiiiiiie e e 5
To use the Event LOGEETccovviiiiiciiccc e 6
IEVENtLOZZET ..o 6
FUNCHOMNS ettt e et e e e et e e e e eebar e e e e e atraeeeeeennnreaeens 6

) 5 o) oo Lo <1 TR 10
TEVEIEVICWET ..ttt e e e e s et e e s s esaaaeeeesesaaeeeeas 10
RegIStrar APl RETEIEINCEoiie e 13
About interface-based APIS ...ttt 13

IBASE e e e b e e e etab e e e eearaaaeeas 14

115 o (OSSPSR 16

RNG APIRETFEIEINCE ...ttt e bbb e e s srrae e e e s abaeeeeans 21
String UtilitieS API RETEIENCEccvii e 23
[aTe (o) Qo) i (U1 101 1 o] o T3PPSO 33

About this guide

The System Ultilities application programming interface (API) is a
new addition to the BlackBerry SDK 2.5. It contains utilities you can
use to supplement your applications: the Event Logger, the Registrar,
and the Random Number Generator, as well as common string
utilities.

For applications based on functions from some components of the
BlackBerry SDK (such as the HTTP API and Remote Address Lookup
API), implementation of System Utilities API functions is required.

Related documentation

Before you use this guide, you should be familiar with the following
documentation. These other resources can help you develop C++
applications for the RIM Wireless Handheld.

* BlackBerry SDK Developer Guide

The BlackBerry SDK Developer Guide explains how to use the
BlackBerry SDK, with tutorials and sample code to demonstrate
how to write handheld applications. For additional information,
visit the BlackBerry Developer Zone at http://
www.blackberry.net/developers.

* README.txt

The README. txt file is installed with the BlackBerry Software
Development Kit (SDK). It provides information on any known
issues and workarounds, as well as last-minute documentation
updates and release notes.

About this guide

4 BlackBerry Software Development Kit

Chapter 1
Event Logger API
Reference

The Event Logger provides a standardized method for recording
events in the handheld’s persistent store. The Event Logger APl is a
new addition to the BlackBerry SDK 2.5.

Events are persistent across a reset of the handheld. The handheld
maintains an event queue; when the log gets too full, new events
flush old ones out of the queue. You can log events at any of the
following six event levels.

Event level Value Description
Severe ELV_SEVERE log severe events
Error ELV_ERROR log error events
Warning ELV_WARNING log warning events
Info ELV_INFO log info events
Debug ELV_DEBUG log debug message events
Always ELV_ALWAYS always log events

To be written into the log, each posted event must either have an
event level equal to or higher than the current logging level or must
be logged with the Always event level. For example, if the logging
level is set to Info, then Severe, Error, and Warning events will be
logged, in addition to Info events. The default logging level is
Warning.

Chapter 1: Event Logger API Reference

To use the Event Logger

1. Include this macro at the beginning of the file containing PagerMain():
DECLARE_EVENT_LOGGER
2. Call InitEventLogger() in PagerMain().

3. Include <iEventlLogger.h> in your application’s header file.

IEventLogger

The iEventLogger class contains functions for logging events. To log events within an
application, include <iEventLogger.h> in your code.

Functions

The following functions are listed alphabetically.

ClearLog ..o 6
GetMINIMUMLEVELooiiieieeeeeeeeee et e n 7
INItEVeNtLOGEET ...cvvvvieiiiiiiiiiciic s 7
LOZEVENL .o 9
SetMINIMUMLEVELooiieeeiieeeeeeeee e 10

The Event Logger API also contains the following inline functions to simplify the
logging process.

DBG_LOG .ttt ettt sttt bbbttt et 6
LOG_ERROR ..ottt sttt sttt et st 7
LOG_EVENT ..ottt ettt sttt st 8
LOG_INFO ettt ettt sttt ettt 8
ClearLog

Clears the Event Logger’s database.
virtual IRESULT ICALLTYPE ClearLog()

Returns Success if the database handle is initialized; error code otherwise.

DBG_LOG

Records an event for debugging on the Event Logger.

form 1: inTine DBG_LOG(short ID,
const char * adtlStr = NULL)
form 2: inTine DBG_LOG(const char * adt1Str)

6 BlackBerry Software Development Kit

iEventLogger

Parameters ID The event ID.

adt1Str A NULL-terminated additional string. It should not be very long. The
additional string has the following purposes:

* used by the viewer if there is a %s in the event string
* error string returned by network

* make debug logging easier

Description Form 1 saves flash memory by logging IDs; form 2 logs debugging information
quickly, without defining event IDs.

GetMinimumLevel

Retrieves the current minimum logging level.

virtual IRESULT ICALLTYPE GetMinimumLevel(int * plLevel)

Parameters pLevel A pointer to the current minimum logging level.

Returns The minimum level at which events are logged.

InitEventLogger

Initializes the Event Logger.

inline IRESULT InitEventLogger()
Returns Success if the Event Logger was successfully initialized.

Description Each application must call this function in PagerMain().

LOG_ERROR

Records the current event on the Event Logger.

inline LOG_ERROR(short errID, const char * adt1Str = NULL)

System Utilities API 7

Chapter 1: Event Logger API Reference

Parameters

Description

Parameters

Description

errID The error level.

adt1Str A NULL-terminated additional string. It should not be very long. The
additional string has the following purposes:

* used by the viewer if there is a %s in the event string
* error string returned by network

* make debug logging easier

LOG_ERROR is an inline function that simplifies the event logging process. It enables
you to log an ERROR event without specifying the module name or the event level.

The event level is ERROR by default.
For example, calling LOG_ERROR is the equivalent to calling:

inline LOG_EVENT(short eventID, EventLever eventLV = ELV_ERROR, const
char * adt1Str = NULL)

LOG_EVENT

Records the current event on the Event Logger.

inline LOG_EVENT(short eventID,
EventLever eventLV,
const char * adt1Str = NULL)

eventID The event ID.
eventLV The event level.

adt1str A NULL-terminated additional string. It should not be very long.
The additional string has the following purposes:

* used by the viewer if there is a %s in the event string
* error string returned by network

* make debug logging easier

LOG_EVENT is an inline function that simplifies the error logging process. It enables you
to log an event without specifying the module name.

LOG_INFO

Records the current event on the Event Logger.

inTline LOG_INFO(short evtID,
const char * adt1Str = NULL)

BlackBerry Software Development Kit

iEventLogger

Parameters evtID The event ID.
adt1str A NULL-terminated additional string. It should not be very long. The
additional string has the following purposes:
* used by the viewer if there is a %s in the event string
* error string returned by network

* make debug logging easier

Description LOG_INFO is an inline function that simplifies the event logging process. It enables you
to log an INFO event without specifying the module name or the event level.

The event level is INFO by default.
For example, calling LOG_INFO is the equivalent to calling:

inline LOG_EVENT(short eventID, EventLever eventLV = ELV_INFO, const char
* adt1Str = NULL)

LogEvent

Records the current event on the Event Logger.

Form 4: virtual IRESULT ICALLTYPE LogEvent(
const char * pModuleName,
unsigned short EventID,
EventLever EventLV,
const char * pAdditionalStr = NULL)

Parameters pModuleName The VersionPtr for the application. It is defined in

PagerMain() and registers the application with the OS task
switcher. For more information on VersionPtr, refer to the
BlackBerry SDK Developer Guide.

EventID The event code. Each application has its own set of code.
EventLV The error level.

pAdditionalStr A NULL-terminated additional string. It should not be very
long. The additional string has the following purposes:

* used by the viewer if there is a %s in the event string
* error string returned by network

* make debug logging easier

Returns Success if the event was successfully logged.

System Utilities API 9

Chapter 1: Event Logger API Reference

Description If you do not specify an EventLV parameter, the event is always logged.

SetMinimumLevel

Sets the current minimum logging level.

virtual IRESULT ICALLTYPE SetMinimumLevel(int Tevel)
Parameters Tlevel The new minimum logging level.

Returns Success if the new logging level has been saved in the database.

Description This is the minimum level that must be returned to log the event in the database.

Error codes

Event Logger functions return an IRESULT code.

IRESULT Code Description

IR_EL_SUCCESS 0 The operation completed successfully.

IR_EL_FAILED -1 The operation failed.

IR_EL_NO_LOGGER -2 An instance of the Event Logger could not be
created.

IR_EL_NOT_READY -3 The Event Logger has not been instantiated.

IR_EL_NOT_LOG_LEVEL -4 The application specified an non-existantlogging
level.

IEventViewer

iEventViewer provides an interface that the other DLLs can use to access the Event
Viewer from their own threads.

To display event logs within an application, include <iEventViewer.h> in your code.

Functions

DiSplayEVents ... 11

10 BlackBerry Software Development Kit

iEventViewer

DisplayEvents

Displays event logs on the handheld.
virtual IRESULT ICALLTYPE DisplayEvents(const char * pModuleName = NULL)

Parameters =~ pModuleName The module for which you are logging events, identified by the
VersionPtr of the application. It is defined in PagerMain() and
registers the application with the OS task switcher. For more

information on VersionPtr, refer to the BlackBerry SDK Developer
Guide.

Description If you do not specify a module name, the Event Viewer displays all system events.

System Utilities API 11

Chapter 1: Event Logger API Reference

12 BlackBerry Software Development Kit

Chapter 2
Registrar API
Reference

The Registrar is an application that manages registration and
instantiation of objects which implement interface-based APIs.

The Registrar enables you to instantiate an object with an interface
pointer. It is applicable to many applications, but particularly to
several of the BlackBerry SDK APIs. In the scope of the HTTP API,
the Registrar enables protocols to be opened and registered, and
manages wireless connections between a handheld and the Internet.
In the scope of the Remote Address Lookup API, the Registrar
instantiates query objects and manages Address Book referencing to
the results.

The Registrar does not provide an explicit function to terminate an
instance of an object. Instead, the iBase interface enables you to
manage references to objects; when the reference count on an object
reaches zero, the object is terminated automatically.

The iStr and iPtr classes manage string memory and object
lifetimes, respectively.

About interface-based APIs

Interface-based APIs (in contrast to exported classes) provide the
following benefits:

Chapter 2: Registrar APl Reference

iBase

14

* Implementation improvement without breaking binary compatibility.

Implementing constructors in the object (server) code enables the
implementation (new members and virtual methods) to be modified without
having to recompile the client code.

* C(Client and server code have no static dependencies.

A lack of static dependencies in the code prevents cyclic dependencies
between applications.

¢ (Client code can test for the existence of an API.

If a desired API does not exist, an application can continue the method
normally without using the missing APIL

Enables alternative implementations.

The implementation of an API can be replaced with an alternative
implementation by loading different applications onto the handheld.

Interfaces/Classes Page Header file

iBase 14 iBase.h

iStr 16 iStr.h

iBase is used to instantiate an object with an interface pointer. This enables you to
create an instance of an object without a static dependancy on an interface; the object
can be referenced through the Registrar, rather than the client that originally created
it. The object is assigned a unique ID.

When an object is instantiated, the reference count is incremented to it. The reference
count on an object is used to determine how many clients are currently referencing it.
When the reference count on an object (such as a stream or connection) decrements to
zero, it is closed automatically.

iBase is the base interface for all interface-based APIs. To include System Utilities API
functions in your application, you must include <iBase.h> in your code.

Functions

The following functions are listed alphabetically.

IBAS@AAARES ...t e 15
iBase::QueryInterface ... 15
IBASEIREIEASEovveeveeieeeteeeeee ettt s aaan 15

BlackBerry Software Development Kit

Returns

Parameters

Returns

Description

Returns

System Utilities API

iBase::AddRef

Increments the reference count to the object by one.

virtual uint ICALLTYPE AddRef() = 0

The current (incremented) reference count.

iBase::Querylnterface

Casts and sets the iface pointer to an object as specified by the Interface ID.

virtual IMETHOD QueryInterface(Interfaceld iid, void ** iface) = 0

iid The interface with which the iface pointer is cast.

iface The pointer to the object to instantiate.

TRESULT_SUCCESS
TRESULT_NULL_POINTER
TRESULT_NO_INTERFACE

QueryInterface instantiates an object with an interface pointer.

iBase

Additionally, QueryInterface increments the reference count to the specified object

(that is, it raises the reference count from zero to one).

iBase::Release

Decrements the reference count to the object by one. When the reference count to a

connection reaches zero, it is closed.

virtual uint ICALLTYPE Release() = 0

The current (decremented) reference count.

15

Chapter 2: Registrar APl Reference

IStr

16

Parameters

Description

iStr manages memory allocated for string objects. It allows for allocated memory to
be freed by the calling application. By assigning a parameter using iStr, you can
manage the memory allocated to the object.

The iStr constructor has four forms:

Form 1: iStrQ)

Form 2: iStr(int size)

Form 3: 1iStr(const char * sz)
Form 4: iStr(const iStr & that)

size The length of the buffer.
sz A pointer to the string for this object to contain.
that A reference to an already initialized iStr object.

Form 2 creates an iStr object with a specified buffer size; Form 3 creates an iStr
object with a pointer to the string to be set; Form 4 creates an iStr object that is a
duplicate of that.

Functions

The following functions are listed alphabetically.

ISEEISE i 16
ISEEAPPENA .o 16
iStr AppendEXact ... 17
ISEEEEMPLY o 17
ISEEEISEMPLY oo 17
ISEEIGIOW i 17
ISHTIOPETALOT ..o 18
ISEEISOL i 18
ISESEtEXACE oot 18
iStr:~iStr

Destroys an instance of an iStr object.

~i5trQ

iIStr::Append

Appends a string to the end of the existing buffer.

Form 1: bool Append(const char * sz)
Form 2: bool Append(const char * sz, uint Tength)

BlackBerry Software Development Kit

Parameters

Description

Parameters

Description

Returns

Parameters

System Utilities API

iStr

sz A pointer to the string to append to the buffer.

length The length of the string.

The length of the string to be appended can be specified. The internal allocated
memory is re-allocated in 16k blocks as required to fit the resulting string.

Form 1 omits the string length argument. Form 2 specifies the length of the string to
append to the buffer.

IStr::AppendExact

Appends a string to the end of the existing buffer.

5o

Form 1: bool AppendExact(const char *

5o

Form 2: bool AppendExact(const char *

sz)
sz, uint length)

sz A pointer to the string to append to the buffer.

Tength The length of the string.

The length of the string to be appended can be specified. The internal allocated
memory is re-allocated to the exact size of the resulting string.

Form 1 omits the string length argument. Form 2 specifies the length of the string to
append to the buffer.

IStr::Empty
Empties the internal buffer.

void Empty()

IStr::ISEmpty
Determines if the internal buffer is empty.

bool IsEmpty()

True if the buffer is empty; false otherwise.

iStr::Grow
Increases the internal RAM buffer without appending or setting a string.

bool Grow(uint newSize)

newSize The size to extend the buffer length to.

17

Chapter 2: Registrar APl Reference

iIStr::operator

Form 1: operator char*() const
Form 2: iStr& operator=(const char * sz)
Form 3: iStr& operator=(const iStr & that)
Form 4: iStr& operator+=(char * sz)
Parameters sz The length of the buffer.
that A reference to an already initialized iStr object.

Description Form 2 sets the left side parameter to be a duplicate of sz. Form 3 sets the left-side
parameter to be a duplicate of that. Form 4 appends sz to the left-side parameter.

iStr::Set
Clears the existing buffer and sets a string to the empty buffer.

o

Form 1: bool Set(const char sz)
Form 2: bool Set(const char * szStart, uint length)

Parameters sz A pointer to the string to append to the buffer.
szStart A pointer to the string to append to the buffer.

Tength The length of the string.

Description The length of the string can be specified. The internal allocated memory is re-allocated
in 16k blocks as required to fit the resulting string. For example, a 20k string would be
allocated 32k.

Form 1 omits the string length argument. Form 2 specifies the length of the string to
set in the buffer.

iStr::SetExact

Clears the existing buffer and sets a string to the empty buffer.

5o

Form 1: bool SetExact(const char *

K8

Form 2: bool SetExact(const char *

sz)
sz, uint length)

Parameters sz A pointer to the string to append to the buffer.

Tength The length of the string.

Description The length of the string can be specified. The internal allocated memory is re-allocated
to the exact size of the resulting string. For example, a 20k string would be allocated
20k.

18 BlackBerry Software Development Kit

iStr

Form 1 omits the string length argument. Form 2 specifies the length of the string to
set in the buffer.

System Utilities API 19

Chapter 2: Registrar APl Reference

20 BlackBerry Software Development Kit

Chapter 3
RNG APl Reference

The RNG API defines random number generation rountines for RIM
Wireless Handhelds. To generate random number data within an
application, include <RNG. h> in your code.

Functions

TATUA oottt et e e e e e ettt e e seesateeeeeeeeaaaeeeesesaateeeseenateeesaaans 21
SEEOA ettt e et et s e e e et e e e e —teeesea ittt eeseeaataeeeaaans 21
rand

Fills a buffer with random bytes.
MessageD11Access void rand(
void * buffer,
int length)

Parameters buffer A bulffer to contain the random bytes

length The length of buffer.

Description Bits are random in each byte.

seed

Seeds the random number generator.

MessageD11Access void seed(
void const * seedData,
int Tength)

Chapter 3: RNG API Reference

Parameters seedData A series of random bytes.

length The number of random bytes in seedData.

Description Seed initializes the random number generator.

22 BlackBerry Software Development Kit

Chapter 4
String Utilities API
Reference

The String Utilities API provides common utilities that are not
available through the standard C library, including string-handling
routines. These utility routines are used by both the Ul engine and by
applications.

See the BlackBerry SDK Developer Guide for a list of standard C
functions that can and cannot be used when writing applications for
the RIM Wireless Handheld.

The functions in the String Utilities API are defined in utilities.h;
the library is utilities.1ib.

Functions

The following functions are listed alphabetically.

=Y o) TSSOt 24
pattern_match ... 24
Prefix_match ... 24
Prefix_match_1 ..o 25
RImMSmMartStremp ... 25
RIMSEICIMP oo 26
RIMSITISIE oottt ettt ere e e eve e aneeans 26
RIMSEIISTE_ NI ooiiviiiiiiie ettt ee e e eenreeeenreeenne 27
RIMSHISTITOIMN ..eoeeiiecieceeeeeeeee ettt e 27
RIMSIISEE oottt ettt esea e ebe e aneeans 27
RIMSEISEE_INIE wevieiiiiiceee et ee e e e e e eenes 28
RIMSEITOL ottt ettt ettt et ear et ereere e ene 28
RIMSEIUICMP oo 29

RIMSEIUCIP i 29

Chapter 4: String Utilities APl Reference

24

Parameters

Returns

Description

Parameters

Returns

Description

SETCAL oo
strepy ...
strncpy
strncmp

strnicmp

atoi

Converts a string to an integer.
inline int atoi(
const char * buffer,
int radix = 10)

buffer A pointer to the string to convert to an integer.

radix One of:
* 8-set to convert the string to octal.
* 10 - set to convert the string to decimal.

* 16 - set to convert the string to hexademical.

The string as an integer.

atoi converts a string to an integer. The string must represent an integer (that is,
consist of a series of numeric digits, with an optional operator sign). atoi continues
converting until a non-numeric digit is reached, at which point it returns the
converted integer.

pattern_match

Determines if a string matches a simple pattern, ignoring case.

bool pattern_match(const char * text,
const char * pattern)

text The text to compare to pattern.

pattern The pattern that text must match.

True if text matches pattern; false otherwise.

pattern_match is a simple routine to determine if one string matches another. It is
case-insensitive and ignores spaces.

prefix_match

Determines if a string begins with a specific prefix, considering case.

BlackBerry Software Development Kit

bool prefix_match(
char const * string,
char const * prefix)

Parameters string The text to test if it begins with prefix.

prefix The text that string must begin with.

Returns True if string begins with prefix; false otherwise.

Description prefix_match considers case when comparing the strings.

For example, if string is Smith and prefix is Sm, prefix_match_i returns true.

prefix_match_i

Determines if a string begins with a specific prefix, ignoring case.

bool prefix_match_i(
char const * string,
char const * prefix)

Parameters string The text to test if it begins with prefix.

prefix The text that string must begin with.

Returns True if string begins with prefix; false otherwise.

Description prefix_match_i compares two strings after converting them to lower case.

For example, if string is Smith and prefix is sm, prefix_match_i returns true.

RimSmartStrcmp

Compares two strings.

int RimSmartStrcmp(
const char * stril,
const char * str2)

Parameters strl The first string to compare.

str2 The second string to compare.

Returns An integer that is:

* <0if strl precedes str2 alphabetically.
* 0Qif strland str2 are considered equal.

* >0if strl follows str2 alphabetically.

System Utilities API

Chapter 4: String Utilities APl Reference

Description

Parameters

Returns

Description

Parameters

26

RimSmartStrcmp compares two strings after converting them to lower case, and
removing any accents. If this does not resolve a difference, the original case of the
strings is considered. If the strings are still equals, the original accents of the strings (if
any) are compared.

For example, if stringl is equal to Smith and string2 is equal to smith,
RimSmartStrcmp returns a negative integer.

RimStricmp

Compares two strings, ignoring case.

int RimStricmp(
const char * stril,
const char * str2)

strl The first string to compare.

strz The second string to compare.

An integer that is:
* <0if strl precedes str2 alphabetically.
* 0Qif strland str2 are considered equal.
* >0if strl follows str2 alphabetically.
RimStricmp compares two strings after converting them to lower case.

For example, if stringl is equal to Smith and string2 is equal to smyth, RimStricmp
returns a negative integer.

RimStristr

Searches for the first instance of a substring pattern within a string, ignoring case.

char * RimStristr(const char * text,
const char * pattern,
int text_length,
unsigned char * skip,
int pattern_length = -1)

text The text to search for pattern.

pattern The substring pattern to search text for.

BlackBerry Software Development Kit

Parameters text The text to search for pattern.
text_Tlength The length of the string in text.
skip A portion of text not to search.

pattern_length The length of the string in pattern.

Returns A pointer to the instance of the substring pattern within the string.

Description RimStristr searches for the first instance of a substring within a string. If the pattern
cannot be located, it converts text and pattern to lower case and searches for the
pattern again.

RimStristr_init
Determines the length of a pattern, ignoring case.

int RimStristr_init(unsigned char * skip,
const char * pattern,
int pattern_length = -1)

Parameters skip A portion of the pattern to ignore.
pattern The pattern to determine the length of.

pattern_length Should be set to -1.

Returns The length of the pattern.

RimStristrTerm

Determines the length of a terminating substring within a string, ignoring case.

#define RimStristrTerm(a,b,c)
RimStristr((a), (b), ((c)-(a))
)

Parameters a The substring to search for.
b The length of the substring.

c A portion of the text to skip.

Returns The length of the terminating substring.

RimStrstr

Searches for the first instance of a substring pattern within a string.

System Utilities API 27

Chapter 4: String Utilities APl Reference

char * RimStrstr(const char * text,
const char * pattern,
int text_length,
unsigned char * skip,
int pattern_length = -1)

Parameters text The text to search for pattern.
pattern The pattern to search text for.
text_length The length of the string in text.
skip A portion of text not to search.

pattern_length The length of the string in pattern.

RimStrstr_init

Determines the length of a pattern.

A

int RimStrstr_init(unsigned char * skip,

const char * pattern,
int pattern_length = -1)

Parameters skip A portion of the pattern to ignore.
pattern The pattern to determine the length of.

pattern_length Should be set to -1.

Returns The length of the pattern.

RimStrtol
Converts a string to a signed long integer.
Tong RimStrtol(const char * nptr,
const char ** endptr,
int ibase)

28 BlackBerry Software Development Kit

Parameters

Returns

Parameters

Returns

Description

Parameters

System Utilities API

nptr A pointer to the string to convert.

endptr A pointer to the position in the string where conversion ended (that is,
the next character after the last numeric digit in the string.)
This is a result parameter.

ibase The conversion base. One of:
* Oxor 0X - if specified, digits are treated as hexadecimal.
* 0-if specified, digits are treated as octal.

* 1to9 -if specified, digits are treated as decimal.

The string as a signed longer integer.

RimStruicmp

Compares two strings, ignoring case and accents.

int RimStruicmp(
const char * stril,
const char * str2)

strl The first string to compare.

str2 The second string to compare.

An integer that is:
* <0if strl precedes str2 alphabetically.
* 0if strland str2 are considered equal.

* >0if stril follows str2 alphabetically.

RimStruicmp compares two strings after converting them to lower case, and removing
any accents.

RimStrucmp

Compares two strings, ignoring any accents.

int RimStrucmp(
const char * stril,
const char * str2)

strl The first string to compare.

strz The second string to compare.

29

Chapter 4: String Utilities APl Reference

Returns An integer that is:
* <0if strl precedes str2 alphabetically.
* 0if strland str2 are considered equal.

* >0if stril follows str2 alphabetically.
Description RimStrucmp compares two strings after removing any accents.

strcat

Concatenates two strings.

char * strcat(
char * dest,
int dest_length,
const char * src)

Parameters dest The string to append src to.
dest_length The maximum length to permit dest to be.

src The string which will be appended to dest.

Returns A pointer to the concatenated string.

Description strcat appends the contents of src to dest.

strcpy
Copies a string.
char * strcpy(char * dest,

int dest_length,
const char * src)

Parameters dest A pointer to the copy destination.
dest_Tength The length of the destination string.

src A pointer to the source string.

Description strcpy copies the contents of src into dest. dest_length should be long enough to
hold the contents of src.

strncpy

Copies part of a string.

char * strncpy(char * dest,
int dest_Tlength,

30 BlackBerry Software Development Kit

const char * src,
int src_length)

Parameters dest A pointer to the copy destination.
dest_length The length of the destination string.
src A pointer to the portion of the source string.

src_length The length of the portion of the source string.

Description strncpy copies the first src_length number of characters from src to dest.

dest_length should be long enough to hold on the contents of src.

strncpy is independant of the UI Engine.

strncmp

Compares part of two strings.

int strncmp(
const char * strl,
const char * str2,
int Ten)

Parameters strl The first string portion to compare.
str2 The second string portion to compare.

Ten The length of the string portions to compare.

Returns An integer that is:
* <0if strlis shorter than str2.
* 0Oifstrland str2 are equal in length.

* >0if strlislonger than str2.

Description strncmp compares a specific portion (1en) of two strings.

strnicmp

Compares part of two strings, ignoring case.

int strnicmp(
const char * stril,
const char * str2,
int Tlen)

System Utilities API

31

Chapter 4: String Utilities APl Reference

Parameters strl The first string to compare.
strz The second string to compare.

len The length of the string portions to compare.

Returns An integer that is:
* <O0if strl precedes str2 alphabetically.
* 0if strland str2 are considered equal.

* >0if strl follows str2 alphabetically.

Description strnicmp compares a specific portion (1en) of two strings after converting them to
lower case. This function depends on the UI Engine.

32 BlackBerry Software Development Kit

Index of functions

E

EventLogger
iEventLogger
ClearLog(), 6

GetMinimumLevel(), 7

InitEventLevel(), 7
LogEvent(), 9

SetMinimumLevel(), 10

iEventViewer
DisplayEvents(), 11

iEventLogger
DBG_LOG, 6
LOG_ERROR, 7
LOG_EVENT, 8
LOG_INFO, 8

R

Registrar

iBase
AddRef(), 15
QueryInterface(), 15
Release(), 15

iStr
Append(), 16
AppendExact(), 17
Empty(), 17

System Utilities API

Grow(), 17
IsEmpty(), 17
Set(), 18
SetExact(), 18
RNG
rand(), 21
seed(), 21

U

utilities
atoi(), 24
pattern_match(), 24
prefix_match(), 24
prefix_match_i(), 25
RimSmartStremp(), 25
RimStricmp(), 26
RimStristr(), 26
RimStristr_init(), 27
RimStristrTerm(), 27
RimStrstr(), 27
RimStrstr_init(), 28
RimStrtol(), 28
RimStrucmp(), 29
RimStruicmp(), 29
strcat(), 30
strcpy(), 30
strnemp(), 31
strnepy(), 30
strnicmp(), 31

Index of functions

33

Index of functions

34

BlackBerry Software Development Kit

Index

A

about
Event Logger, 5
interface-based APIs, 13
random number generator, 21
Registrar, 13

API functions
Event Logger, 5
Registrar, 13
RNG, 21
String Utilities, 23

C

comparing, strings, 25, 26, 29, 31
concatenating, strings, 30
converting

string to int, 24

string to long, 28
copying, strings, 30

E

Event Logger
clearing the database, 6
error codes, 10
initializing, 7
inline functions, 6
using, 6

event logs, displaying, 11

F

files
RNG.h, 21
utilities.h, 23
utilities.lib, 23

G

getting, minimum logging level, 7

System Utilities API

interface pointer, setting, 15

L

logging
debug events, 6
error events, 7
events, 9
info events, 8

O

objects, instantiating, 15

R

random numbers

filling a buffer, 21
seeding the generator, 21
reference count
decrementing, 15
incrementing, 15

S

setting, minimum event level, 10
string buffers
appending to, 16, 17
emptying, 17
increasing size of, 17
setting content, 18
strings
comparing, 25, 26, 29, 31
concatenating, 30
converting, 24
copying, 30
determining length, 27, 28
matching
pattern, 24
prefix, 24, 25
searching, 26, 27

Index

35

| F—¥
,FZE?’?

© 2002 Research In Motion Limited
Published in Canada

	About this guide
	Related documentation

	Event Logger API Reference
	To use the Event Logger
	iEventLogger
	Functions
	ClearLog
	DBG_LOG
	GetMinimumLevel
	InitEventLogger
	LOG_ERROR
	LOG_EVENT
	LOG_INFO
	LogEvent
	SetMinimumLevel

	Error codes

	iEventViewer
	Functions
	DisplayEvents

	Registrar API Reference
	About interface-based APIs
	iBase
	Functions
	iBase::AddRef
	iBase::QueryInterface
	iBase::Release

	iStr
	Functions
	iStr::~iStr
	iStr::Append
	iStr::AppendExact
	iStr::Empty
	iStr::IsEmpty
	iStr::Grow
	iStr::operator
	iStr::Set
	iStr::SetExact

	RNG API Reference
	Functions
	rand
	seed

	String Utilities API Reference
	Functions
	atoi
	pattern_match
	prefix_match
	prefix_match_i
	RimSmartStrcmp
	RimStricmp
	RimStristr
	RimStristr_init
	RimStristrTerm
	RimStrstr
	RimStrstr_init
	RimStrtol
	RimStruicmp
	RimStrucmp
	strcat
	strcpy
	strncpy
	strncmp
	strnicmp

	Index of functions
	Index

