
BlackBerry Software
Development Kit
Version 2.5

Address Book API Reference Guide

BlackBerry Software Development Kit Version 2.5 Address Book API Reference Guide
Last revised 06 May 2002

Part number PDF-04633-001

At the time of publication, this documentation complies with RIM Wireless Handheld version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, �Always On, Always Connected�, the �envelope in motion� symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers.

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Published in Canada

Contents

About this guide.. 5
Related documentation ...5

Address Book API Reference .. 7
Functions..7

Index of functions ... 25

Index .. 27

About this guide

This guide describes the Address Book application programming
interface (API), which is part of the extended API set for the RIM
Wireless Handheld. The Address Book database in the RIM Wireless
Handheld maintains a list of contacts. Using the functions of the
Address Book API, your application can add, delete, edit and send
and receive contact information, and can send messages to contacts.

Related documentation
Before using this guide, you should be familiar with the following
documentation. These other resources can help you develop C++
applications for the RIM Wireless Handheld.

� BlackBerry SDK Developer Guide

The BlackBerry SDK Developer Guide explains how to use the
BlackBerry SDK, with tutorials and sample code to demonstrate
how to write handheld applications. For additional information,
visit the BlackBerry Developer Zone at http://
www.blackberry.net/developers.

� Database API Reference Guide

If your application needs to create its own database, refer to the
Database API Reference Guide.

� Remote Address Lookup API Reference Guide

Using the Remote Address Lookup API, your applications can
access and record contact information from an enterprise server.
The RIM implementation of the Remote Address Lookup
interfaces with the Address Book application.

About this guide

6 BlackBerry Software Development Kit

� README.txt

The README.txt file is installed with the BlackBerry Software Development Kit
(SDK). It provides information on any known issues and workarounds, as well as
last-minute documentation updates and release notes.

Chapter 1
Address Book API
Reference

The Address Book API is a set of interfaces that access the Address
Book database. (The Address Book application creates and maintains
the Address Book database.) Using these calls, an application can
search the Address Book database by contact name, create new
records, add fields to a record, and edit the data in the fields.

The Address Book application on the RIM Wireless Handheld is an
example of an application that uses the Address Book API. The
Handheld User Guide explains how to use the aplication to select
addresses and search for addresses.

To use the following Address Book API functions in your application,
you must include <address.h> in your code.

Functions
The following functions are listed alphabetically.

add_address_field_type ... 8
add_validation_callback .. 10
delete_address_record .. 11
edit_address_data ... 11
find_address_handle .. 11
get_address_book_change_count ... 12
get_address_field_data ... 13
get_address_field_handle .. 13
get_address_field_type ... 14
get_address_match_count .. 14
get_address_method_count ... 15
get_default_method 15

Chapter 1: Address Book API Reference

8 BlackBerry Software Development Kit

get_field_type_name .. 16
get_name ... 17
register_address_book_update .. 19
save_address_data ... 19
select_method (deprecated) .. 20
select_method_using ... 21
select_name ... 23

The following group addressing functions can be used if the network provider makes
the service available. Group addresses must be created using the RIM Address Book
application. To use group address functions in your application, you must include
<AddressGroupAPI.h> in your code.

get_address_handle_from_UIN ... 14
get_group_member_info ... 16
get_num_of_members_in_group ... 17
get_ordinal_offset_for_field_handle ... 18
get_uin_from_address_handle ... 18
is_group_address ... 18

add_address_field_type

Enables an application to add or modify an address field type.

bool add_address_field_type(
AddressFieldType field_type,
AbFlag command_flags = UPDATE_FIELD_FLAGS,
AbFlag field_flags = FIELD_DEFAULT,
const char * field_name = NULL,
const char * field_label = NULL,
int max_edit_size = DEFAULT_MAX_EDIT_SIZE)

Returns True if the operation is successful; false otherwise.

Parameters field_type The type of the address field.

command_flags Characteristics to be added or updated for this field type;
refer to the table below.

flags If set, the characteristics to be associated with this field type;
refer to the table below.

field_name If set, the name(s) to be used for this field type.

field_label If set, the label(s) to be used for this field type.

max_edit_size If set, the maximum number of characters that can be placed
in this type of field.

Address Book API 9

Description add_address_field_type updates or creates the field type for the address book
records. The Address Book provides a number of predefined field types. Applications
can also add their own field types, and/or modify the characteristics of any address
field type as required.

The following table displays a list of possible command flags:

Field labels are used when displaying a field and its contents. The format is generally
fieldLabel field_data.

In the following example, the field label is Email: Email: johndoe@rim.net.

Field names are typically used in menus. A typical format is Action Field_name.

In the following example, �Email� and �PIN� are field names:

Use Email
Use PIN

Flag Action

CREATE_FIELD Set this flag to create a new field type. If it is set, all other
parameters must be provided; that is, it is equivalent to:
SET_FIELD_FLAGS | SET_FIELD_NAME |
SET_FIELD_LABEL | SET_FIELD_EDIT_SIZE
If it is not set, then this function will update the given field type
using the other command flags.

SET_FIELD_FLAGS Set this flag to set the field characteristics for the given field type.
If this flag is not set, the current field flags are retained.

UPDATE_FIELD_FLAGS Set this flag to add new characteristics to the given field type.
The current characteristics are retained, and the given
characteristics are OR’ed with them.

SET_FIELD_EDIT_SIZE Set this flag to use the value specified in max_edit_size when
you edit a field of this type.

SET_FIELD_NAME Set this flag to point to a NULL-terminated string (or strings)
which is returned by calls to get_field_type_name for this
field type.

SET_FIELD_LABEL Set this flag to point to a NULL-terminated string (or strings) that
is returned by calls to get_field_type_label for this field
type.

Note: SET_FIELD_FLAGS and UPDATE_FIELD_FLAGS should not be set in the same function
call. If either one is set, the flags parameter is used to set or update the field characteristics.

Chapter 1: Address Book API Reference

10 BlackBerry Software Development Kit

The following table displays a list of possible field characteristic flags:

add_validation_callback

Adds a callback to determine if data is valid for a specific field type.

void add_validation_callback(AddressFieldType field_type,
bool(*callback_verify)(const char * data,

AddressFieldType field_type)

Description Before a callback can be added, register_address_book_update must be called.

This function enables you to validate user input into Address Book fields that you
create.

Field Description

FIELD_COMM_METHOD Set this flag to specify the field as a communication method.

FIELD_DEFAULT Set this flag to specify the default field characteristics, equal to
FIELD_TEXT | FIELD_EDITABLE.

FIELD_EDITABLE Set this flag to specify that the field is editable by the user.

FIELD_LOCAL Set this flag to specify that the field should not be backed up, or
sent from the handheld.

FIELD_MULTIPLE Set this flag to specify that the field can occur more than once in
a single address record (for example, Email).

FIELD_NEW_CREATE Set this flag to specify that the field is created for each new
address record.

FIELD_REQUIRED Set this flag to specify that this field must exist in all address
records.

FIELD_SORTABLE Set this flag to specify that this field can be used for sorting
address records.

FIELD_TEXT Set this flag to specify that this field can be displayed to the user.

FIELD_UNIQUE Set this flag to specify that this field contains unique data. Each
field of this type in the Address Book must contain different
data.

Parameters field_type The address field to affect.

(*callback_verify)
(const char * data,
AddressFieldType field_type)

A pointer to the callback function.

Address Book API 11

delete_address_record

Removes an address record from the database.

bool delete_address_record(AddressHandle address_handle)

Returns True if the record is deleted successfully; false if the record deletion fails or if the
address handle is invalid.

edit_address_data

Edits data in an address field.

bool edit_address_data(
AddressHandle address_handle,
AddressFieldHandle field_handle = DB_INVALID_FIELD_HANDLE,
AddressFieldType field_type = INVALID_FIELD_TYPE)

Returns True if the address record could be edited; false otherwise.

Description edit_address_data enables the user to modify the editable data in the address record.
The field, if specified by field_type or field_handle, is given initial edit focus. If no
field is specified, then the first editable field (typically the First Name field) has initial
edit focus.

find_address_handle

Retrieves a handle for a specific address record.

AddressHandle find_address_handle(
AddressFieldType field_type,
byte * data_ptr, int data_length,
AddressHandle * field_handle = NULL)

Parameters address_handle Handle for the address record to remove.

Parameters address_handle Handle for the address record.

field_handle If set, handle for address field that is to have initial edit focus.
If set to DB_INVALID_FIELD_HANDLE, the first editable field in
the address record has the initial edit focus.
Note: field_type must be set to the type associated with this
field handle.

field_type Type of field in the address record that is to have initial edit
focus. If set to INVALID_FIELD_TYPE, the first editable field in
the address record has the initial edit focus.

Chapter 1: Address Book API Reference

12 BlackBerry Software Development Kit

Returns Handle of the first address record that has a field of the given field type and field data
that matches the given data. The data lengths must match, but the comparison is case
insensitive.

Returns DB_NULL_HANDLE if:

� field_type is invalid

� data_ptr is NULL or empty (��)

� no address record fields with the given field type match a given data string

If the field_handle parameter is provided, the handle of the matching field is also
returned.

Description find_address_handle searches for the first address record that contains a field of
field_type that matches the data pointed at by data_ptr.

Example: A Message application can use this function to determine the friendly name of an
incoming message sender. In this case, the email or PIN information is matched
against the current contacts and their Email or PIN fields. For example, the following
code could be used to find the name �John Doe� in the Address Book:

char * raw_name ="johndoe@rim.net"; // Sender Email address
char friendly_name[40]; // Name of Sender

AddressHandle adh = find_address_handle(EMAIL,
(unsigned char *) raw_name, DB_TEXT);

if (adh != DB_NULL_HANDLE)
{

get_name(adh, (char *) friendly_name, 40);
}

get_address_book_change_count

Retrieves the number of changes since the last handheld reset.

int get_address_book_change_count()

Returns The number of changes made to the address book database since the last handheld
reset.

Parameters field_type Type of data pointed at by data_ptr.

data_ptr Pointer to the data to be matched.

data_length Length of the data. If set to DB_TEXT, then data_ptr points to a
NULL-terminated string.

field_handle If set, pointer to a data location in which the handle of the
matching field in the address record is to be placed.

Address Book API 13

get_address_field_data

Retrieves data from the address book.

const byte * get_address_field_data(
 AddressHandle address_handle,
 AddressFieldHandle field_handle,
 int * data_length = NULL)

Returns A pointer to the data for the given field within the address record. It returns NULL if
either the address_handle or field_handle is invalid. If specified, the length of the
data is placed in data_length.

Description If field_handle is NULL, get_address_field_data looks for the first instance of the
field type. If field_handle is not NULL, get_address_field_data looks for the next
instance of the field type.

get_address_field_handle

Retrieves a handle to an address field.

AddressFieldHandle get_address_field_handle(
AddressHandle address_handle,
AddressFieldType field_type,
AddressFieldHandle * field_handle = NULL)

Returns If a field is found in the address record with the given field type, then the handle of
this field is returned. Otherwise, DB_INVALID_FIELD_HANDLE is returned.

Description By setting the field_handle parameter to NULL, this function returns the first field
whose type matches the field_type parameter, for the given address record. If the
field_handle parameter is a valid field handle, then this function returns a handle to

Parameters address_handle Handle for the address record.

field_handle Handle for field within the address record.

data_length If set, a location in which the data length of the field is to be
placed.

Note: If address_handle is equal to ONESHOT_HANDLE, the value of field_handle is
ignored.

Parameters address_handle Handle for the address record within the Address Book.

field_type Type of the address field.

field_handle If set, the handle of the previous field in the address record.

Chapter 1: Address Book API Reference

14 BlackBerry Software Development Kit

the next field in the address record whose type matches field_type. When no more
matching fields of the given type can be found in the given address record,
DB_INVALID_FIELD_HANDLE is returned.

get_address_field_type

Retrieves the type of a field within an address record.

AddressFieldType get_address_field_type(
AddressHandle address_handle,
AddressFieldHandle field_handle)

Returns The type of data in the field. INVALID_FIELD_TYPE is returned if the address_handle or
field_handle is invalid.

Description This function can be used to get the type of data associated with a given field in an
address record.

get_address_handle_from_UIN

Retrieves an address handle from a database record ID. This is a group addressing
function.

bool get_address_handle_from_UIN(
DbRecordId UIN,
AddressHandle & adHandle)

Returns True if successful; false otherwise.

get_address_match_count

Retrieves the number of contacts with names that match the given search string.

int get_address_match_count(
const char * search_string,
AddressHandle * address_handle = NULL)

Parameters address_handle Handle for the address record.

field_handle Handle for the field within the address record.

Parameters UIN Unique identifier number (database record ID).

adHandle Storage location for resulting address handle.

Address Book API 15

Returns The number of address records matching the given search string.

Description get_address_match_count displays the number of matched addressees.

get_address_method_count

Retrieves the number of communication methods available for the given contact
(address record).

int get_address_method_count(
AddressHandle address_handle,
AddressFieldHandle * field_handle = NULL,
AddressFieldType this_field_type = INVALID_FIELD_TYPE)

Returns The number of send paths (communication methods) that the given contact has. If no
type is specified, then the count of all send methods for the contact is returned.

If the contact has only one matching communication method then field_handle, if
set, it points to the handle of the field within the address record.

Description get_address_method_count provides the number of address communication
methods.

get_default_method

Retrieves the default communication method for a contact.

bool get_default_method(
AddressHandle address_handle,
AddressFieldHandle * field_handle,
AddressFieldType * field_type = NULL)

Parameters search_string String of characters that is to be matched.

address_handle If set, points to a data location in which the handle of the first
address record matching the search string is to be placed.

Parameters address_handle Handle for the address record.

field_handle If set, the location in which the handle for the first field of the
given field type will be placed.

this_field_type Communication method field type to be counted.

Chapter 1: Address Book API Reference

16 BlackBerry Software Development Kit

Returns True if the default method for the given contact could be found; false otherwise.

Description The field representing the default communication method is returned in the
field_handle parameter.

The default communication method is defined as the last communication method that
was selected for a given contact found using a call to select_method_using.

get_field_type_name

Retrieves the display string associated with the given field type.

const char * get_field_type_name(
AddressFieldType field_type,
int offset = 0)

Returns A displayable NULL-terminated string for a given field type.

Description This function returns �Email� in the following example:

const char * email_label=get_field_type(EMAIL);

get_group_member_info

Retrieves information on a recipient in a group address.

bool get_group_member_info(
AddressHandle group_handle,
int index,
AddressHandle * address_handle,
char ** field_data)

Parameters address_handle Handle for the address record.

field_handle If set, the location in which the field handle will be placed.

field_type If set, the location in which the field type will be placed.

Parameters field_type The type of address field.

offset Offset within the field type name array. The offset parameter can
be used to select from two or more names for the same field type.
For example, the name field_type has two names: First and Last.
You could use the following code to get the label of the Last name
field:
const char * last_name = get_field_type_name
(NAME, 1);

Address Book API 17

Returns True if successful; false if the data could not be retrieved.

This is a group addressing function.

get_name

Retrieves the name associated with a given address record.

bool get_name(
AddressHandle address_handle,
char * buffer,
int length)

Returns True if the address_handle points to a valid address record and the name can be
copied to the buffer; false otherwise.

Description get_name has a return value of the name for the given address. A string that contains
the name is copied into the buffer parameter and its length is returned in the length
parameter.

get_num_of_members_in_group

Retrieves the number of recipients in group address.

int get_num_of_members_in_group(AddressHandle adHandle)

Returns Number of recipients for the group address, or -1 if adHandle is invalid or not a group
address.

Parameters group_handle Handle of group address.

index Index (0-based) of the recipient about whom information is
wanted; the last entry is at
get_num_of_members_in_group(group_handle) - 1.

address_handle Storage for the handle that corresponds to the address of the
recipient, specified by index.

field_data Storage for the email address string of the address of the
recipient, specified by index.

Parameters address_handle Handle for the address record.

buffer Location of the data buffer.

length Length of the data buffer.

Parameters adHandle Handle of the group address to query.

Chapter 1: Address Book API Reference

18 BlackBerry Software Development Kit

This is a group addressing function.

get_ordinal_offset_for_field_handle

Retrieves an ordinal number for field handle in an address.

byte get_ordinal_offset_for_field_handle(
AddressHandle adHandle,
AddressFieldHandle fh,
AddressFieldtype FieldType = EMAIL)

Returns A 1-indexed byte value representing the ordinal of the field handle fh. If fh is the first
instance of a field of type FieldType, the function returns 1. If it is the second, 2, and
so on. If there are no instances of FieldType, it returns 0.

get_uin_from_address_handle

Retrieves the UIN (database record ID) associated with an address handle.

DbRecordId get_uin_from_address_handle(AddressHandle address_handle)

Returns Database record ID of the address handle, or DB_NULL_RECORD_ID if the
DbRecordHandle cannot be found.

This is a group addressing function.

is_group_address

Determines whether an address handle corresponds to a group address.

bool is_group_address(AddressHandle adHandle)

Returns True if adHandle corresponds to a group address; false otherwise.

This is a group addressing function.

Parameters adHandle Handle of the address to query.

fh Field handle.

FieldType The type of field.

Parameters address_handle Address handle of a group address.

Parameters adHandle Handle of the address to query.

Address Book API 19

register_address_book_update

Registers with the Address Book to receive callbacks when address book data
changes.

bool register_address_book_update(void (*callback_function)(void))

Returns False if the callback function pointer is NULL; true otherwise.

Description To avoid blocking the calling thread, the callback function should generate a separate
thread to process address book changes. The get_address_book_change_count
function can be used to determine if any changes have been made since the last
handheld reset.

save_address_data

Saves the new or updated data for the field in the address record.

bool save_address_data(
AddressHandle & address_handle,
byte * data_ptr,
int data_length,
AddressFieldHandle field_handle = DB_INVALID_FIELD_HANDLE,
AddressFieldType field_type = INVALID_FIELD_TYPE,
bool UniqueField = true,
bool AppendBinaryToText = false)

Parameters (*callback_function)(void) A pointer to a callback function that accepts no
parameters and has a return value of void.

Parameters address_handle Handle for the address record to be saved. It should be
set to DB_NULL_HANDLE to save a new address book
record, or to the appropriate address handle to update
an existing record.

data_ptr Pointer to the data to be saved.

data_length Length of the data to be saved.

field_handle If set, the handle of the address field to be updated. To
save a new field, set to DB_INVALID_FIELD_HANDLE;
to update a field, set to the handle of that field.

Chapter 1: Address Book API Reference

20 BlackBerry Software Development Kit

Returns True if the operation is successful; false otherwise.

Description This function saves the new or updated data for the field within the address record.
Note that either a valid field handle or a valid field type must be specified.

select_method (deprecated)

Selects the contact name and send method.

bool select_method(
AddressHandle * address_handle,
AddressFieldHandle * field_handle,
char * search_string = NULL,
const char * title = NULL,
*AddressFieldType * field_type = NULL,
char ** field_data = NULL,
int * field_length = NULL,
bool force_field_type = false)

field_type Field type of the address record field to be saved.
To save a new field, set to INVALID_FIELD_TYPE;
to update a field, set to the type of that field.

UniqueField If true,the field must be a unique field in this address
record. If no fields of the given field type exist in this
address record, a new field is created. Otherwise, the
first field of this type is updated.

AppendBinaryToText If true, the given data buffer points to binary (opaque)
data that is appended to the text data for the given field.

Parameters address_handle Pointer to the data location in which the handle of the
selected address record (contact) is to be placed.

field_handle If set, pointer to a data location in which the handle of the
selected field of the selected address record is to be placed.

search_string If set, initializes the address list view to include all names
that match the given search string. If NULL, all Address
Book entries are shown in the initial address list view.

title If set, the title to be displayed in the address list view

field_type If set, pointer to a data location in which the type of the
selected field of the selected address record will be placed.
If force_field_type is true, it points to the type of field
that must be selected.

Address Book API 21

Returns True if an address and communication method are selected; false otherwise. If true is
returned, then the following data locations are set, if requested by non-NULL
pointers:

� address_handle

� field_handle

� field_type

� field_data

� field_length

Description This function is deprecated; instead, your code should use select_method_using.

select_method_using

Selects the contact name and send methods.

bool select_method_using(
AddressHandle * address_handle,
AddressFieldHandle * field_handle,
char * search_string = NULL,
const char * title = NULL,
AddressFieldtype * field_type = NULL,
char ** field_data = NULL,
int * field_length = NULL,
unsigned int send_using_method_list = UINT_MAX)

field_data If set, points to a data buffer pointer, where the location of
the selected field data of the selected address record is to be
placed.
Note: The application should copy the given field_data
length into its own data space, because the data location
that is returned can be reused at any time by the Address
Book application.

field_length If set, pointer to a data location in which the length of the
selected field data is to be placed.

force_field_type If true, the chosen method must match the type specified in
the field_type. If false, any method can be selected.

Chapter 1: Address Book API Reference

22 BlackBerry Software Development Kit

Returns True if an address and communication method are selected; false otherwise. If true is
returned, then if the appropriate parameters were non-NULL pointers, the following
data locations are set:

� address_handle

� field_handle

Parameters address_handle Pointer to the data location where the handle of the
selected address record (contact) is to be placed.

field_handle If set, pointer to a data location where the handle of
the selected field of the selected address record is to
be placed.

search_string If set, initializes the address list view to include all
names that match the given search string. If NULL,
all Address Book entries are shown in the initial
address list view.

title If set, the title to be displayed in the address list
view.

field_type If set, pointer to a data location where the type of the
selected field of the selected address record is to be
placed.

field_data If set, points to a data buffer pointer, where the
location of the selected field data of the selected
address record is to be placed.
Note: The application should copy the given
field_data length into its own data space, since the
data location returned may be reused at any time by
the Address Book application.

field_length If set, pointer to a data location where the length of
the selected field data is to be placed.

send_using_method_list A bitmask of acceptable communications methods.
Construct the bitmask using methods defined in
<addressFieldType.h>. Those values are bit-shift
values, not the actual bits to be set. For example, to
specify that both the EMAIL and FAX methods are
acceptable, use this code:

acceptable_methods= (1<<EMAIL) + (1<<FAX)

The method actually used comes from a list created
by ANDing the bitmask of acceptable
communications methods and the bitmask of
methods supported by the network services.

Address Book API 23

� field_type

� field_data

� field_length

Description select_method_using requires the user to select the contact name and acceptable
contact methods.

The user can select [Use Once] when selecting a communication method. In this case,
the data locations store these special values:

� * address_handle is set to a special value, ONESHOT_HANDLE

� field_handle is set to INVALID_FIELD_HANDLE

� field_type, field_data, and field_length are as with any other communication
method.

select_name

Displays a list of names in the address book, which enables the user to select a specific
address.

bool select_name(
AddressHandle * address_handle,
char * search_string = NULL,
const char * title = NULL)

Returns True if an address is selected; false otherwise. If true, the data area pointed at by
address_handle is set with the handle of the selected address record.

Description This function displays the list view of Address Book contacts, and prompts the user to
select a name from the list. After the user selects an address, control is returned to the
calling application, with the address_handle parameter set. The application can then
call get_name to retrieve the name of the selected contact.

If search_string contains multiple words separated by spaces, the Address Book
application tries to match all of the words. Thus, if you provide a contact�s initials
separated by a space, all Address Book entries with those initials appear to the user. If,
for example, search_string is �M S�, only the address entries with those initials
appear. Similarly, if it is �Ma St�, only names matching both prefixes appear.

Parameters address_handle Pointer to the data location in which the handle of the
selected address record (contact) will be placed.

search_string If set, initializes the address list view to include all names
that match the given search string. If NULL, all Address
Book entries are shown in the initial address list view.

title If set, the title to be displayed in the address list view.

Chapter 1: Address Book API Reference

24 BlackBerry Software Development Kit

Index of functions

Address Book API 25

Index of functions
A
AddressBook

add_address_field_type(), 8
edit_address_data(), 11
find_address_handle(), 11
get_address_book_change_count(), 12
get_address_field_data(), 13
get_address_field_handle(), 13
get_address_field_type(), 14
get_address_match_count(), 14
get_address_method_count(), 15
get_default_method(), 15

get_field_type_name(), 16
get_group_member_info(), 16
get_name(), 17
get_num_of_members_in_group(), 17
get_ordinal_offset_for_field_handle(), 18
get_uin_from_address_handle(), 18
is_group_address(), 18
register_address_book_update(), 19
save_address_data(), 19
select_method(), 20
select_method_using(), 21
select_name(), 23

Index of functions

26 BlackBerry Software Development Kit

Index

Address Book API 27

Index
A
Address Book

editing address data, 11
field type, 8
getting address book change count, 12
registering update, 18, 19

address data
saving, 19

D
database record id, 14
default method

getting, 15

E
editing address data, 11

F
field data

getting, 13
field handle

getting, 13
field type

creating, 8
getting, 14
updating, 8

field type name
getting, 16

finding the address handle, 11
flags, 9

G
getting

address field data, 13
address field handle, 13

address field type, 14
address match count, 14
address method count, 15
default method, 15
field type name, 16
name, 17

H
handle

finding, 11

I
introduction, 5

M
match count

getting, 14
method

selecting, 20
method count

getting, 15

N
name

getting, 17
selecting, 23

S
saving address data, 19
selecting

name, 23

U
uin, 14

© 2002 Research In Motion Limited
Published in Canada

	About this guide
	Related documentation

	Address Book API Reference
	Functions
	add_address_field_type
	add_validation_callback
	delete_address_record
	edit_address_data
	find_address_handle
	get_address_book_change_count
	get_address_field_data
	get_address_field_handle
	get_address_field_type
	get_address_handle_from_UIN
	get_address_match_count
	get_address_method_count
	get_default_method
	get_field_type_name
	get_group_member_info
	get_name
	get_num_of_members_in_group
	get_ordinal_offset_for_field_handle
	get_uin_from_address_handle
	is_group_address
	register_address_book_update
	save_address_data
	select_method (deprecated)
	select_method_using
	select_name

	Index of functions
	Index

