
BlackBerry Software
Development Kit
Version 2.5

Radio API Reference Guide (DataTAC)

BlackBerry Software Development Kit Version 2.5 Radio API Reference Guide
Last modified: 18 March 2002
Part number: PDF-04639-001

At the time of printing, this documentation complies with RIM Wireless Handheld Version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, �Always On, Always Connected�, the �envelope in motion� symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers. There are no warranties, express or implied,
with respect to the content of this document.

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Produced in Canada

Contents

About this guide.. 5
Other resources ..5

CHAPTER 1 Getting started .. 7
Understanding the DataTAC network ...7
Routing ..8

Host-based routing...8
Peer-to-peer routing ...8

Data packets..9
SDU formatting...10

CHAPTER 2 Radio API reference... 11
DataTAC Radio API ..11

Structures ...11
Functions..15

Radio events ...23
Error codes..24

Index .. 25

About this guide

This guide provides a detailed reference for the Radio Application
Programming Interface (API).

The Radio API provides packet-level access to the DataTAC network
using function calls to send and receive data. You do not need
extensive knowledge of the network to use these functions.

This guide assumes you have experience with C++ programming.

Other resources
Before using this guide, you should be familiar with the following
documentation. These other resources can help you develop C++
applications for the BlackBerry Wireless Handheld.

All RIM documentation is available at http://developers.rim.net.

� BlackBerry SDK Developer Guide

This guide explains how to use the BlackBerry SDK and contains
sample code for the wireless handheld�s general functions.

� BlackBerry SDK Message API Reference Guide

The Radio API provides packet-level access to the radio network.
If your application needs to send messages, such as email or fax,
use the Messaging API.

� README.txt

The README.txt file is installed with the BlackBerry Software
Developer Kit (SDK). It provides information on any known
issues and workarounds, as well as last-minute documentation
updates and release notes.

About this guide

6 BlackBerry Software Developer Kit

Chapter 1
Getting started

This chapter provides an overview of radio communications over the
DataTAC network, including these topics:

� overview of the DataTAC network

� how data is routed in the network

Understanding the DataTAC network
DataTAC is a packet-switched, wide-area wireless data network.
DataTAC is one of the world�s most widely available narrowband
personal communications service (PCS) networks. The network
infrastructure uses digital cellular service providers around the
world. Motient operates the DataTAC network in the United States
and Bell Mobility operates the DataTAC network in Canada.
DataTAC service is also available throughout Asia, Australia, and
Europe.

Wireless applications typically send short amounts of data in bursts,
with fairly long delays between each transmission. Packet switching
uses limited radio frequency resources efficiently by enabling
multiple users to share channels.

DataTAC provides highly reliable, 2-way digital data transmission.
The network provides error detection and correction, including
transmission acknowledgement, to maintain the integrity of the data
being sent.

Note: This chapter provides background information on radio
communications on the DataTAC network. This information is not intended
to be comprehensive. Contact your network operator for complete
documentation on network operation.

Chapter 1: Getting started

8 BlackBerry Software Developer Kit

Packet-switching technology provides flexibility and efficiency for wireless data
transmission, especially when the application involves messaging, dispatching,
remote queries, or other situations in which only small amounts of data are
transferred.

Routing
Each RIM Wireless Handheld, and any other device on the DataTAC network, is
assigned a unique Logical Link Identifier (LLI).

DataTAC offers two basic routing methods:

� host-based routing

� peer-to-peer routing

Host-based routing
Host-based routing assumes that a central computer processes applications that
service many wireless devices, such as the RIM Wireless Handheld.

Host-based routing is used for communication between a mobile device and one or
more servers in a fixed location. The server is normally connected to the DataTAC
network over a land line, rather than radio frequencies. This provides a more
economical means of communication when many packets are transmitted.

The following are some of the environments that are suited to host-based routing:

� when a mobile device has access to information stored in a database located on a
remote server

� when a server performs much of the processing

� when the mobile unit fills in fields of a form that is located on the server and then
transmits those fields

The handheld radio modem uses the Radio Data Link Access Protocol (RD-LAP) to
transfer PDUs between the handheld and a DataTAC base station. RD-LAP transfers
data at either 9600 bits per second (bps) or 19,200 bps, depending on the network.
Some DataTAC networks also offer the Mobile Data Communications (MDC)
protocol, which operates at 4800 bps. Your DataTAC network operator can provide
you with details of the radio link protocol(s) in use.

Peer-to-peer routing
Peer-to-peer routing is used for communication between two mobile devices. A
Message Generator (MG) host on the DataTAC network manages all the details of the
communication.

Data packets

Radio API Reference Guide (DataTAC) 9

The Message Generator (MG) record format is used for peer-to-peer routing. MG is
the application user header of the service data unit (SDU). The MG header signals to
the DataTAC network that the SDU originates from a handheld and is destined to
another device. When the SDU is delivered, the MG in the user header is replaced
with Received Message (RM).

Refer to the following file included with the SDK: ...\OS_Samples\src\dt_ping.c.

Data packets
The data stream between devices connected to the DataTAC network is divided into
SDUs. SDUs can contain up to 2048 bytes for routing information (such as a
destination address) and user data.

The application must build and format SDUs. When sending more than 2048 bytes of
data, an application must divide data into several SDUs of up to 2048 bytes each. For
example, a 5000-byte �message� must be sent to the handheld as three data packets:
two packets of 2048 bytes, and a final packet with 904 bytes of user data. The
application at the destination must collect these packets, verify that none are missing,
and place them in the correct sequence. This might require a transport layer.

The SDU_HEADER is defined in datatac.h. Not all of the information about the SDU is
encapsulated in the SDU_HEADER structure. For example, the LLI for the SDU
destination is not encoded in this structure. The structure of the data packet varies
greatly between network providers. Contact your network operator for information
on addressing and routing SDUs.

Note: At the data link layer between the handheld and the network base station, each SDU is
divided into smaller 512-byte or 256-byte protocol data units (PDUs). These packets are sent
one at a time over the radio network and are then reassembled at the destination into the SDU.
If your network operator charges airtime based on the number of PDUs transmitted, it might be
economical to design applications to minimize the number of PDUs, instead of the number of
bytes. Contact your DataTAC network operator to discuss airtime pricing and how to develop
an application that minimizes data transmission cost.

Chapter 1: Getting started

10 BlackBerry Software Developer Kit

SDU formatting
When your application constructs an SDU, it must fill in the SDU_HEADER structure and
provide a pointer to the data. Refer to "Structures" on page 11 for more information.
Refer to the samples dt_ping.c and hostsim.c included with the SDK for examples.
The following table describes the format of an MG message for peer-to-peer routing
over the DataTAC network. Optional fields are shaded.

Byte Description

2 User header length, most significant byte first (must set to 0x0002)

2 User header (MG if sending, RM if received)

8 LLI of sender (Hex-ASCII)

1 Forward slash delimiter (0x2F)

8 LLI of destination #1 (Hex-ASCII)

1 Forward slash delimiter (0x2F) - optional

8 LLI of destination #2 (Hex-ASCII) – optional

1 Forward slash delimiter (0x2F) – optional

8 LLI of destination #3 (Hex-ASCII) – optional

1 Forward slash delimiter (0x2F) – optional

8 LLI of destination #4 (Hex-ASCII) - optional

1 Carriage return delimiter (0x0D)

1 Bit 6 = TRUE: reply to a requested reply

1 Bit 7 = TRUE: reply message
Bit 6 = TRUE: reply requested
Bit 5 = TRUE: forwarded message
Bit 3 = TRUE: registered receipt
Bit 2 = TRUE: registered message
Bit 1 = TRUE: priority message

5 Month, day, year, hour, minute (binary-coded decimal)

8 Original source LLI (Hex-ASCII) - only if forwarded message

1 Carriage return delimiter (0x0D)

~ Data area (variable length)

Data packets

Radio API Reference Guide (DataTAC) 11

Chapter 1: Getting started

12 BlackBerry Software Developer Kit

Chapter 2
Radio API reference

This chapter provides information on Radio API structures,
functions, and error codes.

DataTAC Radio API
The Radio API provides access to the radio network using simple API
function calls to send and receive data. You do not need extensive
knowledge of the radio network to use these function calls.

Radio events are announced to applications through the message
system and provide information on the status of incoming and
outgoing packet communications. Refer to "Radio events" on page 23
for more information.

Structures
The Radio API uses the following structures.

SDU_HEADER ... 11
RADIO_INFO ... 12
NETWORKS_INFO .. 13

SDU_HEADER

This structure represents the header data in an SDU packet.

typedef struct {
 WORD HeaderLength;
 BYTE Resend;
 BYTE Priority;
} SDU_HEADER;

Chapter 2: Radio API reference

12 BlackBerry Software Developer Kit

RADIO_INFO

This structure stores general information about the state of the radio.

typedef struct {
 SDWORD RadioOn;
 DWORD LLI;
 DWORD ESN;
 DWORD FaultBits;
 SDWORD RSSI;
 BYTE Area;
 BYTE Base;
 WORD ChannelDesignator;
 BYTE ChannelAttributes[2];
 WORD RfVersion;
 WORD RcVersion;
 BYTE Reserved[2];
 BOOL Contact;
 DWORD PowerSaveMode;
 BOOL ReceiverEnabled;
 BOOL TransmitterEnabled;
} RADIO_INFO;

Field Description

headerlength Indicates the length of the header data, also called the user header offset
(UHO).

resend Indicates whether the SDU is a retry of the previous SDU:
SEND_NEW
SEND_RESENDS

priority Indicates the priority level of the SDU:
PRI_NORMAL
PRI_VERY_LOW
PRI_LOW
PRI_HIGH

Field Description

RadioOn Either RADIO_ON or RADIO_OFF.

LLI The LLI as a 32-bit value.

ESN The electronic serial number, as a 32-bit value.

FaultBits Indicates a series of flags indicating possible problems on the
handheld.

DataTAC Radio API

Radio API Reference Guide (DataTAC) 13

NETWORKS_INFO

This structure is used to query the radio for supported network IDs.

typedef struct {
 int DefaultNetworkIndex;
 int CurrentNetworkIndex;
 int NumValidNetworks;
 struct {

BYTE NetworkName[10];
BYTE NetworkAddress[3];
BYTE NetworkType;
BYTE NetworkChannels;
BYTE NetworkLLIs;

 } Networks[10];
} NETWORKS_INFO;

RSSI A value ranging from –113 to –40, or RSSI_NO_COVERAGE; values
above –90 are generally reliable coverage.

Area/Base Current Base and Area IDs for that location in which the handheld
has network coverage, or for the location in which the handheld last
had network coverage.

ChannelDesignator Indicates which channel the handheld is currently using.

ChannelAttributes Indicates the attributes of the channel the handheld is currently
using.

RfVersion Version of the protocol currently in use.

RcVersion Version number of device radio code.

Contact Indicates whether the handheld is in contact with the network
(1 = in coverage, 0 = out of coverage).

PowerSaveMode Indicates the status of the powersave mode:
0 = EXPRESS
1 = MAXIMUM
2 = AVERAGE
3 = MINIMUM

ReceiverEnabled Indicates the status of the receiver mode:
(1 = Rx enabled, 0 = Rx disabled).

TransmitterEnabled Indicates the status of the transmitter mode (1 = Tx enabled, 0 = Tx
disabled).

Field Description

Chapter 2: Radio API reference

14 BlackBerry Software Developer Kit

Field Description

DefaultNetworkIndex Default network

CurrentNetworkIndex Current network

NumValidNetworks Number of valid networks

NetworkId Network frame synchronization word (0xB433 in the US)
Part of the Networks substructure in NETWORKS_INFO

NetworkName[10] Name of the network
Part of the Networks substructure in NETWORKS_INFO

NetworkAddress[3] Network home address

NetworkType Network type:
0 - DataTAC 4000
1 - DataTAC 5000
2 - DataTAC 6000

NetworkChannels Number of channels for network

NetworkLLIs Number of group LLIs for network

DataTAC Radio API

Radio API Reference Guide (DataTAC) 15

Functions
The following functions are listed alphabetically.

RadioAccelerateRetries ... 15
RadioCancelSendSdu .. 15
RadioChangeNetworks ... 16
RadioChangePowerSave ... 16
RadioDeregister .. 17
RadioGetAvailableNetworks ... 17
RadioGetDetailedInfo .. 18
RadioGetSdu ... 18
RadioGetSignalLevel ... 19
RadioOnOff ... 20
RadioRegister .. 20
RadioResumeReception .. 21
RadioSendSdu .. 21
RadioStopReception ... 22

RadioAccelerateRetries

Causes the radio to retry transmitting more aggressively.

void RadioAccelerateRetries(int sduTag)

Description When the radio has difficulty transmitting an MPAK to the base station due to
network congestion or poor network coverage, it normally increases the interval
between transmission retries to allow conditions to improve.
RadioAccelerateRetries causes the radio to retry sending the MPAK in the
handheld more aggressively. This decreases battery life in exchange for stronger
attempts to send the MPAK. RadioAccelerateRetries should normally only be called
based on user action that indicates that the user is waiting for a packet to be sent (such
as the user selecting Resend for data that has already been submitted by an
application).

RadioCancelSendSdu

Cancels a submitted SDU.

int RadioCancelSendSdu(int sduTag)

Parameters sduTag Tag of the MPAK for which the radio should accelerate
transmission (not currently used).

Parameters sduTag This is the tag assigned by the application server when the packet
is submitted to the handheld for transmission. Passing in -1 for
the sduTag value cancels all SDUs queued for transmission by the
calling application.

Chapter 2: Radio API reference

16 BlackBerry Software Developer Kit

Returns The number of SDUs that are cancelled; a negative value if an error occurs.

Description The RadioCancelSendSdu attempts to cancel a submitted packet that is identified by
the tag number.

If RadioCancelSendSdu is called before the SDU is transmitted, the SDU is returned to
the application as cancelled, provided that it has not already been sent. There is no
guarantee, however, that a cancelled SDU was not already received by the DataTAC
network.

RadioChangeNetworks

Changes the current radio network.
bool RadioChangeNetworks(BYTE * NetworkName)

Returns No return value.

Description This function changes the current network to the specified network. This could be
necessary if the application requires access to networks in both Canada and the
United States.

RadioChangePowerSave

Changes the enhanced powersave (EPS) mode.

int RadioChangePowerSave(int mode)

Parameters NetworkName Name of the network to which the current network is
being changed.

Parameters mode The EPS mode to use, where mode is one of the integers listed in the
following table.

DataTAC Radio API

Radio API Reference Guide (DataTAC) 17

Returns If the powersave mode is changed successfully, this function returns 0; otherwise, the
function returns a negative value (refer to �Radio events� on page 23).

Description Using powersave modes only affects the latency for receiving data. Powersave does
not increase the latency of transmitting data from the radio.

RadioDeregister

Deregisters applications from receiving radio events.

void RadioDeregister(void)

Returns No return value.

Description This function deregisters the current application so that it no longer receives RADIO
events. Any MPAKs that the deregistering application has pending for transmission
are cancelled and returned to the application. Therefore, it is still possible for the
application to receive some radio events after de-registering.

Example Refer to DTPING.CPP.

RadioGetAvailableNetworks

Programs the available networks into the handheld.

void RadioGetAvailableNetworks(NETWORKS_INFO * info)

Int Mode Description

0 Express Express mode leaves the receiver on continuously. This means that power
consumption is extremely high, but latency in receiving packets is
eliminated. This mode should be used only by applications that are not
powered by batteries and for which power consumption is not a
consideration.

1 Maximum Maximum mode (EPS 1) provides the maximum battery life possible. The
receiver turns on automatically once every two minutes to check for
buffered messages at the base station. If any messages are pending to the
radio, the receiver stays on to receive them.

2 Average Average mode (EPS 2) consumes more power than EPS 1, but reduces the
reception latency to one minute.

3 Minimum Minimum mode (EPS 3) consumes more power than EPS 2 but reduces
reception latency to 30 seconds.

Parameters info Pointer to a NETWORKS_INFO structure (refer to �Structures� on
page 11).

Chapter 2: Radio API reference

18 BlackBerry Software Developer Kit

Returns No return value.

Description Enables you to query the handheld and determine which networks have been
programmed.

RadioGetDetailedInfo

Retrieves the current state of the radio.

void RadioGetDetailedInfo(RADIO_INFO * info)

Returns No return value.

Description Retrieves the current state of the radio, such as LLI, RSSI, on/off, powersave/express,
base, and area, into a RADIO_INFO structure (refer to �Structures� on page 11 for
details)

Example Refer to DTPING.CPP.

RadioGetSdu

Retrieves the data when an SDU is received.

int RadioGetSdu(int sduTag,
SDU_HEADER * header,
BYTE * data)

Parameters sduTag This argument is the SDU_TAG value from the MESSAGE_RECEIVED
message. Note that the SDU_TAG value has a limited life span. For
received SDUs, the tag must be used before getting the next message
or yielding control.

header This argument is a pointer to an SDU_HEADER structure (refer to
�Structures� on page 11 for details). The header information extracted
from the SDU will be placed in this structure.
The header length element of the HEADER structure contains the user
header length of the SDU.
The Resend element of the HEADER structure contains the SDU resend
information.
The Priority element of the HEADER structure contains the SDU
priority information.

data This argument is a pointer to a buffer that is large enough to contain
the SDU data (at least 2048 bytes). The amount of space required can
be determined in advance by calling RadioGetSdu. If the data pointer
is NULL, the SDU data is not copied.

DataTAC Radio API

Radio API Reference Guide (DataTAC) 19

Returns If the function is successful, the return value is the number of data bytes in the data
portion of the SDU (0 to 2048). If the function is unsuccessful, the return value is
negative.

Description When an SDU is received, the sduTag value is contained in the message. This tag
value is used to obtain subsequent information about the SDU.

RadioGetSdu can also be used to get copies of SDUs that are queued for transmission.
SDUs that are queued for transmission can be recalled at any time until the first
RimTaskYield or RimGetMessage after the SDU is returned to the application as either
sent or unsuccessful.

RadioGetSdu can be used in several ways:

� Get header only: to obtain only the header set, the data pointer to NULL

� Get Header and SDU: both pointers point to their respective data areas; only the
data portion of the SDU is copied into the data buffer.

The SDU is only guaranteed to be available until the application yields control to the
system (via RimGetMessage or RimYield). Actually, the SDU remains available until all
applications that have registered to receive SDUs have received the
RADIO/MESSAGE_RECEIVED message. After all registered applications have received
this message, the SDU is released the next time that control is yielded to the system
(through RimGetMessage or RimTaskYield).

Example Refer to DTPING.CPP.

RadioGetSignalLevel

Gets the current signal strength.

int RadioGetSignalLevel()

Returns Radio signal level in dBm, if the handheld is in an area of wireless network coverage;
the value is typically between -121 dBm and -40 dBm.

If the handheld is out of network coverage, the return value is -256
(RSSI_NO_COVERAGE) or less.

Description The return value is always negative. A higher number (closer to 0) indicates greater
strength of the received signal. For example, �90 dBm. indicates greater coverage than
-93 dBm.

Example Refer to DTPING.CPP.

// Displays the strength of the received radio signal
int level = RadioGetSignalLevel();

if (level > RSSI_NO_COVERAGE){
sprintf(buffer, “Level = %d dBm”, level);

} else {
sprintf(buffer, “No coverage”);

}

Chapter 2: Radio API reference

20 BlackBerry Software Developer Kit

RadioOnOff

Checks/changes radio status (on/off).

int RadioOnOff(int mode)

Returns The function returns the state of the radio before RadioOnOff was called, and can be
one of the following values:

Description This function enables the applications to check and modify the on/off state of the
radio. The radio must be explicitly turned on if applications want to use it, as its
default state is off if any applications are loaded.

Example Refer to DTPING.CPP.

RadioRegister

Registers applications for radio events.

void RadioRegister()

Returns No return value.

Description Applications must call this function to receive notification of RADIO events (including
received MPAKs). Applications that have not registered for radio events cannot send
or receive MPAKs. After calling RadioRegister, the application receives a
SIGNAL_LEVEL message if the radio is on or receives a RADIO_TURNED_OFF message if
the radio is off.

Example Refer to DTPING.CPP.

Parameters mode Specifies the new state of the radio; the mode parameter can be one of the
following values:
radio_on � turns on the radio
radio_off � turns off the radio
radio_get_onoff � returns the current state

radio_on The radio is on.

radio_off The radio is off, or turning off.

radio_lowbatt The radio is on, but the battery is too low for it to be operational.

Note: Refer to RadioGetDetailedInfo to check other details of the radio’s state.

DataTAC Radio API

Radio API Reference Guide (DataTAC) 21

RadioResumeReception

Indicates that the application is ready to receive MPAKs again.

void RadioResumeReception()

Returns No return value.

Description This function is used to indicate that the application is ready to receive MPAKs again
after RadioStopReception is called. If RadioStopReception is used to save an MPAK,
the MPAK is again received with a MESSAGE_RECEIVED message, as if it had just been
received by the radio.

This function must be called by the same task or thread that calls
RadioStopReception. Each task that calls RadioStopReception must call this function
before more MPAKs can be received.

Example Refer to DTPING.CPP.

RadioSendSdu

Submits an SDU for transmission by the radio.

int RadioSendSdu(SDU_HEADER * header,
BYTE * data,
int length)

Returns A tag is assigned to the SDU by the application server. If the sequence identification is
negative, the message could not be queued for sending. The returned tag value is
always less than MAX_QUEUED_SDUS, which is currently 7.

Description RadioSendSdu submits an SDU for transmission by the radio. If an SDU has already
been submitted for transmission by this or any other application, the SDU is queued
for transmission. If more than four SDUs are already queued, RadioSendSdu fails and
returns a negative error code.

RadioSendSdu copies the data provided, so the data pointed to when the call is made
can be deleted after the call returns.

Example Refer to DTPING.CPP.

Parameters header A pointer to an SDU_HEADER structure that contains information for
building the SDU header.

data A buffer containing the data bytes to be included in the SDU.

length Indicates the number of data bytes to be included in the SDU.

Chapter 2: Radio API reference

22 BlackBerry Software Developer Kit

RadioStopReception

Indicates that the radio is not ready to receive MPAKs.

void RadioStopReception(int sduTag)

The RadioStopReception stops the receiving of SDUs for the pager. It is intended to
be used if all buffers for receiving SDUs are full.

Description The RadioStopReception function stops the handheld from receiving MPAKs. It is
intended for use when all buffers for receiving MPAKs are full. This function should
be used only if no more memory can be allocated to save received data.
RadioStopReception causes the radio to eventually stop receiving MPAKs for all
applications running on the handheld.

Further MPAKs can still be received after RadioStopReception is called, as they might
already be in the calling task�s message queue. These MPAKs can still be saved by
calling RadioStopReception again.

Example Refer to DTPING.CPP

Parameters sduTag If RadioStopReception is called in response to a
MESSAGE_RECEIVED message, the sduTag value can be passed
into the function as a parameter. After
RadioResumeReception is called, the saved MPAK is resent to
the calling application.

Radio events

Radio API Reference Guide (DataTAC) 23

Radio events
When any of the following events occur, the Device member of the MESSAGE
structure is equal to DEVICE_RADIO.

Event Description

MESSAGE_RECEIVED This event is sent to all applications that have registered to receive
radio events (RadioRegister). This event indicates that a data
packet was received from the DataTAC network.
The SubMsg field contains a tag value to be passed into
RadioGetSdu. RadioGetSdu

MESSAGE_SENT This event is an acknowledgement that a transmitted packet was
received by the DataTAC network. This event is sent to the
application that sent the packet, whether that application is in the
foreground or the background. The SubMsg field contains the tag
value that was returned by RadioGetSdu.

MESSAGE_NOT_SENT This event indicates that an attempt to transmit information to the
DataTAC network failed. This event is sent to the task that
submitted the packet when coverage is too poor for transmission
or when an invalid data package is sent. The SubMsg field contains
the tag value returned by RadioGetSdu. The Data[0] contains
the error number.

SIGNAL_LEVEL This event is sent to all registered applications to indicate that the
received signal level has changed. The SubMsg field contains a
negative value that represents the level of the signal in dBm. A
more positive value (closer to zero) indicates a stronger signal. A
value of -256 dBm (RSSI_NO_COVERAGE) indicates that the
modem is out of coverage.

NETWORK_STARTED This event is sent to all registered applications to indicate that the
radio modem has been turned on or has just switched to a new
network.

Chapter 2: Radio API reference

24 BlackBerry Software Developer Kit

Error codes
The following error codes pertain to radio function return values.

BASE_STATION_CHANGE This event is sent when the handheld switches base stations.
It has no other effect and requires no action on the part of the
application.

RADIO_TURNED_OFF This event is sent to all registered applications to indicate that the
radio modem has been turned off, either by the user or as a result
of a low battery.

MESSAGE_STATUS An MPAK sent to the Radio API might not be transmitted
immediately. The sender of an MPAK is notified of that MPAK
transmission status through this event. The Data[0] field of the
message structure contains one of the following status subcodes:
� MPAK_TRANSMITTING : MPAK is being sent by the radio

� MPAK_TX_PENDING: The radio is not transmitting the MPAK
because of transmission difficulties; it will try again later

Event Description

Code Description Description

-1 RADIO_APP_NOT_REGISTERED Applications must be registered for radio events
to be allowed to send MPAKs. Attempting to send
MPAKs without being radio- registered returns
this error code.

-2 RADIO_SDU_NOT_FOUND Attempting to fetch an MPAK with a tag value
that has expired produces this error code. MPAKs
must be fetched before the task yields control to
other tasks.

-3 RADIO_NO_FREE_BUFFERS Attempting to send an MPAK with all the radio's
outgoing buffers full produces this error code.

-4 RADIO_BAD_DATA Attempting to send an MPAK with format data
that cannot be used in an MPAK produces this
error code.

-5 RADIO_BAD_TAG Attempting to fetch an MPAK with a tag value
outside the legal range produces this error code.

-6 RADIO_ERROR_GENERAL This is a generic radio error.

Radio API Reference Guide (DataTAC) 25

Index
Functions
RadioAccelerateRetries, 15
RadioCancelSendSdu, 15
RadioChangeNetworks, 16
RadioDeregister, 17
RadioGetAvailableNetworks, 17
RadioGetDetailedInfo, 17, 18
RadioGetSdu, 18
RadioGetSignalLevel, 19
RadioOnOff, 20
RadioRegister, 20
RadioResumeReception, 21
RadioSendSdu, 21
RadioStopReception, 22

A
airtime pricing, 9
applications

deregister, 17

B
battery power

low batteries, 24
Bell Mobility, 7

C
cancelling a submitted packet, 15

F
files

dt_ping.c, 10
hostsim.c, 10

G
getting SDUs, 18

H
host-based routing, 8

I
Increasing speed of retransmission, 15

L
LLI, 8

M
MESSAGE_NOT_SENT event, 23
MESSAGE_RECEIVED event, 23
MESSAGE_SENT event, 23
modem

out of network coverage, 23
Motient, 7

N
network

data packets, 8
NETWORK_STARTED event, 23

P
packets

cancelling submitted, 15
peer-to-peer routing, 8

Index

26 BlackBerry Software Developer Kit

R
radio

registering for events, 20
state, 17, 20

RADIO_TURNED_OFF event, 24
receiving packets

event, 23
resume, 21
stopping, 22

related documentation, 5
routing

host-based, 8
peer-to-peer, 8

S
SDK

components, 5

SDUs
about, 8
cancelling submitted, 15
format, 10
getting, 18
length, 9
sending, 21

sending packets
events, 23

sending SDUs, 21
signal strength, 19, 23
SIGNAL_LEVEL event, 23
SubMsg field, 23

T
Transmitting packets

cancel send, 15

© 2002 Research In Motion Limited
Produced in Canada

	About this guide
	Other resources

	Getting started
	Understanding the DataTAC network
	Routing
	Host-based routing
	Peer-to-peer routing

	Data packets
	SDU formatting

	Radio API reference
	DataTAC Radio API
	Structures
	Functions

	Radio events
	Error codes

	Index

