
BlackBerry Software
Development Kit
Version 2.5

Operating System API Reference Guide

BlackBerry Software Development Kit Version 2.5
Operating System API Reference Guide
Last modified: 24 May 2002

Part number: PDF-04637-001

At the time of publication, this documentation complies with BlackBerry Software Development Kit
version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, �Always On, Always Connected�, the �envelope in motion� symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers. There are no warranties, express or implied,
with respect to the content of this document.

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Published in Canada

Contents

About this guide.. 5
Related documents ..5

System API ... 7
Structures ..7
Thread and communication functions..12
Memory allocation functions ...24
Time functions..26
User notification functions ...30

Password functions ..33
Miscellaneous functions..34

File System API .. 47
Structures ..47
Functions...48
Return codes ...67

Serial communications API... 69
Serial communications functions ..69
Constants...75
Error Codes...75
Events ..76

Keypad API... 77
Functions...77
Constants...79
Events ..79

LCD API... 81
Structures ..81
LCD functions ..82
Constants...104
Return codes ...105

Peripheral API.. 107
Functions...107

Device events .. 111
SYSTEM device events...112
TIMER device events ...114
RTC (real-time clock) device events...114
HOLSTER device events..115
KEYPAD device events..115
RADIO device events...118
COM device events ..119

Index of functions ... 121

Index .. 123

About this guide

This guide provides detailed reference information for the
Operations System application programming interface (API).
The OS API can manage multiple applications running
simultaneously. Applications can call each other, enabling you to
write new components for the handheld without needing to rewrite
entire applications.

Related documents
The BlackBerry SDK Developer Guide explains how to use the
BlackBerry SDK, with tutorials and sample code to demonstrate how
to write handheld applications.

For additional information, visit the BlackBerry Developer Zone at
http://www.blackberry.net/developers.

About this guide

6 BlackBerry Software Development Kit

Chapter 2
System API

This section provides information on the System API, declared in
Rim.h:

� structures (refer to page 7)

� functions (refer to page 12)

Structures
The following set of structures are specific to the System API.

AlertConfiguration ... 7
DEVICE_INFO .. 9
MESSAGE .. 10
PID .. 11
TIME ... 11

AlertConfiguration

The AlertConfiguraton structure stores information about the
handheld notification settings.

typedef struct {
BYTE duty;
BYTE volume;
BYTE maxVolume;
BYTE repetitions;
BYTE vibrateTime;
BYTE vibrateType;
BYTE inHolsterNotify;
BYTE outOfHolsterNotify;
BYTE pause;

} AlertConfiguration;

Chapter 2: System API

8 BlackBerry Software Development Kit

Field Values Description

duty 1 to 99 Percentage ratio of the on/off frequency
pulse

volume 1 to 100 Initial beep volume, from 1 (softest) to 100
percent (loudest)

maxVolume 1 to 100 Maximum beep volume, from 1 to 100
percent. If the number of repetitions is
greater than one, the volume increases on
each repetition, with the last repetition at
maxVolume.

repetitions 1 to 10 The number of times TONE_SEQUENCE_X is
sounded, where X is the tone number.

vibrateTime 0 to 255 The vibrate time, in tenths of a second (i.e.
from 0 seconds to 25.5 seconds)

vibrateType PULSE_VIBRATE The vibration repeats the following cycle for
a total of vibrateTime/10 seconds:
ON for ¼ second
OFF for ¼ second
ON for ¼ second
OFF for 1 second

CONTINUOUS_
VIBRATE

Vibration is turned on for vibrateTime/10
seconds

inHolsterNotify
outOfHolsterNotify

These two variables allow different tone/vibrator strategies to be
selected, depending on whether the handheld is in its holster or not.
The following strategies are available:

NO_NOTIFY Do not vibrate or sound any tones.

TONE_ALERT Sound tones only; do not use vibrator.

VIBRATE_ALERT Vibrate only; do not sound any tones.

Structures

Operating System API Reference Guide 9

DEVICE_INFO

The DEVICE_INFO structure stores information about the user�s handheld.

typedef struct {
 BYTE deviceType;
 BYTE networkType;
 WORD reserved1;
 union {
 DWORD MAN;
 DWORD LLI;
 BYTE reserved2[16];
 } deviceId;
 DWORD ESN;
 BYTE HSN[16];
 BYTE reserved3[24];
} DEVICE_INFO;

VIBRATE_AND_TONE Use both vibrator and tones simultaneously
to alert the user.

VIBRATE_THEN_TONE At first, vibrate only. If the alert is not
cancelled after the vibration time, sound
the tone sequence. Each repetition of the
tone sequence is sounded at a louder
volume, as described above, until the alert is
cancelled or the maximum number of
repetitions is reached.

pause 0 to 255 Tenths of a second of pause time between
repetitions of a tone sequence.

Field Description

deviceType Valid values are:
DEV_PAGER
DEV_OEM
DEV_HANDHELD

networkType Valid values are:
NET_MOBITEX
NET_DATATAC

reserved1 Reserved for future expansion.

DeviceId The identifier (traditionally MAN or LLI number) of the handheld.

Field Values Description

Chapter 2: System API

10 BlackBerry Software Development Kit

MESSAGE

The MESSAGE structure represents a system or application message. Handheld
applications receive external event notification from the system through MESSAGEs.
Applications can also use MESSAGEs to communicate between their own threads or
with other applications.

typedef struct {
DWORD Device, Event, SubMsg, Length;
char * DataPtr;
DWORD Data[2];

} MESSAGE;

The Device and the Event fields are mandatory. A number of calls require the
application to examine the contents of Data[0]. However, the OS does not examine
messages between applications, so use of the fields in the MESSAGE structure is up to
each individual developer.

ESN The electronic serial number.

HSN[16] Reserved for future expansion.

reserved3 Reserved for future expansion.

Field Description

Device The sender of the message (mandatory). If the sender is a Wireless Handheld,
the device field of the message is set to one of:
DEVICE_SYSTEM
DEVICE_KEYPAD
DEVICE_RTC
DEVICE_TIMER
DEVICE_COM1
DEVICE_RADIO
DEVICE_HOLSTER
DEVICE_USER
Values of DEVICE_USER or greater can be used by user applications; see
rim.h for values. See “Device events” on page 111 for a description of each
device and its events.

Event The event that caused this message to be sent (mandatory)

SubMsg Extra data pertaining to the event (optional)

Field Description

Structures

Operating System API Reference Guide 11

PID

The PID structure stores information about a process.

typedef struct {
const char * Name;
BOOL EnableForeground;
const BitMap * Icon;

} PID;

TIME

typedef struct {
BYTE second;
BYTE minute;
BYTE hour;
BYTE date;
BYTE month;
BYTE day;
WORD year;
BYTE TimeZone;

} TIME;

Data Extra data pertaining to the event (optional)

DataPtr A reference external to the message, used to pass large amounts of data
(optional)

Length The record size referenced by DataPtr, if used (optional)

Field Description

Name The name associated with the process.

EnableForeground Used by the task-switcher to determine if the process in question
is foregroundable or not. Processes that provide no user interface
(like background tasks) should not appear as a foreground task
and should have this field set to FALSE.

Icon A pointer to the tasks icon. The icon is displayed by the task
switcher, if the EnableForeground field is TRUE.

Field Description

Chapter 2: System API

12 BlackBerry Software Development Kit

Thread and communication functions
This section describes thread and inter-process communication functions, listed in
alphabetical order.

RimCreateThread ... 13
RimDisableAppSwitch .. 13
RimEnableAppSwitch ... 13
RimFindTask ... 14
RimGetCurrentTaskID .. 14
RimGetForegroundApp .. 14
RimGetMessage .. 14
RimGetPID .. 16
RimInvokeTaskSwitcher ... 16
RimPeekMessage .. 16
RimPostMessage .. 17
RimRegisterMessageCallback .. 17
RimReplyMessage .. 19
RimRequestForeground .. 20
RimSendMessage ... 20
RimSendSyncMessage ... 20
RimSetPID ... 21
RimSetReceiveFromDevice ... 21
RimTaskYield .. 22
RimTerminateThread .. 22
RimToggleMessageReceiving .. 23
RimWaitForSpecificMessage .. 23

Member Meaning

second 0 to 59

minute 0 to 59

hour 0 to 23; the internal clock uses 24 hour time format

date 0 to 31, depending on the month

month An enumerated field. January = 1, February = 2, …, December = 12

day An enumerated field. Sunday = 0, Monday = 1, …, Saturday = 6

year The valid range of years is between 1998 and 2090

TimeZone An enumerated field. GMT is 0; all other zones are counted in half hours
from that point. For example, EST is GMT –5 hours which would be stored
as –10 half hours

Thread and communication functions

Operating System API Reference Guide 13

RimCreateThread

Enables an application to dynamically create a new thread, with its own stack, in the
application server.

TASK RimCreateThread(
 void (*Entry)(void),
DWORD Stacksize)

Returns The task handle of the newly created thread; 0 (zero) if the thread could not be
created.

Description The new thread shares the same data space as the parent process. If there are no more
task handles available or not enough memory then the function fails. The thread can
be initialized by the attributes below.

Threads that are created cannot be placed on the foreground unless the thread enables
this attribute with the RimSetPID function.

Created threads do not receive any radio events unless they register for Radio events
using the RadioRegister() function.

For example, see bouncer.c and ping.c.

RimDisableAppSwitch

Prevents other applications from gaining foreground processing.

BOOL RimDisableAppSwitch()

Returns True if the function was successful; false otherwise.

Description This function, when called by the foreground program, prevents other applications
from gaining foreground processing. This function should be used when entering a
critical procedure in an application that must remain in the foreground. Only the task
which called RimDisableAppSwitch can re-enable task-switching by calling
RimEnableAppSwitch.

RimEnableAppSwitch

Enables other applications to request foreground processing.

BOOL RimEnableAppSwitch()

Returns True if the function was successful; false otherwise.

Parameters Entry A pointer to the entry function.

Stacksize The size, in bytes, of the local stack for the newly created thread.
This value must be large enough to hold the stack for the thread,
plus the stack space required by the API when called. Setting this
value too small creates unpredictable results. It is recommended
that this value never be set less than 2000.

Chapter 2: System API

14 BlackBerry Software Development Kit

Description This function enables other applications to request foreground processing. Only the
task which called RimDisableAppSwitch can re-enable task-switching by calling
RimEnableAppSwitch.

RimFindTask

Enables an application to search for a task based on its version string.

TASK RimFindTask(char * Prefix)

Returns The handle of the task that has a version string that starts with prefix. If no such task
is found, RimFindTask returns TASK_NOT_FOUND.

Description This function enables an application to search for a task based on its version string.
The first task found that has a version string that starts with the string specified by
prefix is selected. Threads created with RimCreateThread can also be found in this
manner, provided they have used RimSetPID to set their version string.

RimGetCurrentTaskID

Retrieves the currents task ID.

TASK RimGetCurrentTaskID()

Returns The task handle of the currently running task.

Description The handle of the current running task. This task handle is the same value when a
task receives the INITIALIZE and POWER_UP events from the application server.

For example, see bouncer.c.

RimGetForegroundApp

Retrieves the handle of the application that currently has focus.

TASK RimGetForegroundApp()

Returns The task handle of the process currently running in the foreground.

Description This function is used when multiple applications are running on the handheld.
Applications running in the background can request the handle of the application that
currently has focus.

RimGetMessage

Enables the calling application to obtain the next message from its message queue.

TASK RimGetMessage(MESSAGE * Msg)

Parameters Prefix The prefix of the version string of the task to search for.

Thread and communication functions

Operating System API Reference Guide 15

Returns The task handle of the task that sent or posted the received message.

Description This function enables the calling application to obtain the next message from its
message queue. If no messages are available to the calling task, the task is suspended
until a message becomes available.

It is important that a task performs RimGetMessage to obtain events, as this enables the
application server to determine which tasks are currently not using the CPU. The
processor is then put into low power mode.

For example, see bouncer.c, hello.c, clock.c, comtest.c, ping.c, realtime.c,
and regmess.c.

Parameters Msg A pointer to a MESSAGE structure that receives the message.

Chapter 2: System API

16 BlackBerry Software Development Kit

RimGetPID

Enables a process to inquire about the attributes of other processes.

BOOL RimGetPID(
TASK hTask,
PID * Pid,
const char ** Subtitle)

Returns True if the task exists or false if the task number is invalid.

Description This function enables a process to inquire about the attributes of other processes. This
enables an application to create its own task-switching menu . If either the Pid or
Subtitle parameter is NULL, it is not used.

RimInvokeTaskSwitcher

Brings the Switcher menu to the foreground.

void RimInvokeTaskSwitcher()

Description This function brings the Switcher menu to the foreground, which allows the user to
switch to another task.

RimPeekMessage

Enables a task to determine whether there are any messages available for it to process.

BOOL RimPeekMessage()

Returns True if there is a message waiting on the event queue for the calling task; false
otherwise.

Description This function enables a task to determine whether there are any messages available
for it to process. A foreground task should call RimPeekMessage to handle keypad or
radio messages while it is performing a long operation.

Parameters hTask The task number for which display information is desired. Valid
values are 0 (the system task) through (MAX_APPLICATIONS -1).

Pid A pointer to the pid structure to be filled in with information about
the specified task.

Subtitle The address of the pointer to be set to point to the specified task�s
subtitle string.

Thread and communication functions

Operating System API Reference Guide 17

RimPostMessage

Enables applications to post messages with the application server to be delivered to
other applications.

void RimPostMessage(
TASK hTask,
const MESSAGE * Msg)

Description This function enables applications to post messages with the application server to be
delivered to other applications. This function returns immediately without waiting
for the message to be processed by the other application. Attempting to send
messages to tasks that do not exist generates an exception. Also see RimSendMessage
for synchronously sending a message to another task.

For example, see bouncer.c.

RimRegisterMessageCallback

Registers a callback function to be called upon retrieval of certain message types.

BOOL RimRegisterMessageCallback(
DWORD MessageBits,
DWORD MaskBits,
CALLBACK_FUNC HandlerFunc)

Parameters hTask An application handle to which the message is being sent.

Msg A pointer to a message structure.

Chapter 2: System API

18 BlackBerry Software Development Kit

If the handler function returns true, the message is passed on to subsequent handler
functions. If the handler function returns false, the message is considered processed
and is not forwarded. If the handler function modifies the message, then the modified
message is subsequently forwarded to other handlers and RimGetMessage.

Multiple handler functions can process the same message. Re-registering a new
function for the same event does not cancel the previous registration. If multiple
handler functions examine the same message, the most recently registered handler
function is called first. To cancel a previous registration, register NULL as the
function pointer first.

Returns True if successful, otherwise false. The function fails if there is no available memory.

Description Registering a callback message enables for certain functions to be called on certain
events without having to check for these types of events on every call to
RimGetMessage.

For example, see regmess.c.

Parameters MessageBits This parameter contains the event number for which you
want to register. All system events also contain a copy of
the device ID in bits 8 to 15.

MaskBits This parameter contains a bitmask of which bits of
MessageBits must mask the event number in order for the
callback to take place. Setting this value to 0xffffffff causes
the callback to be made only on the exact event. Setting it
to zero causes the callback to be made on every event,
while setting it to 0xff00 causes the callback to happen on
every event from a specific device.

HandlerFunc A pointer to a function to process the message. If this
parameter is set to NULL, the function registered for that
message is unregistered.
The function must be declared as follows:
int Handler(MESSAGE * msg)
This function is called when the callback criteria is met.
The function is always called when the application is in a
state of blocking on RimGetMessage. The call is made in the
registered application�s context.

Note: Registering callbacks is application-specific. Registering callbacks for certain events does
not affect the processing of messages in other applications. However, calls to
RimGetMessageRaw can override the callback. Refer to RimGetMessageRaw (page 39).

Thread and communication functions

Operating System API Reference Guide 19

RimReplyMessage

Responds to applications that are waiting for a return message by calling
RimSendSyncMessage.

BOOL RimReplyMessage(
TASK HTask,
MESSAGE * Msg)

Returns True if the message is sent to a valid task and the task is waiting for a
RimReplyMessage from the calling task; false otherwise.

Description The RimReplyMessage function is used to respond to applications that are waiting for
a return message by calling RimSendSyncMessage. It is the responsibility of the
receiving application to call RimReplyMessage or the sending application will never
unblock.

Parameters HTask The task handle of the application to which the message is to be sent.

Msg The pointer to the message to be returned to the task that called
RimSendSyncMessage.

Chapter 2: System API

20 BlackBerry Software Development Kit

RimRequestForeground

Enables background applications to be switched into the foreground.

BOOL RimRequestForeground(TASK HTask)

Returns True if the request was granted or false if the request failed.

Description This function enables background applications to be switched into the foreground. If
a request is granted, the current foreground application is notified by a
SWITCH_BACKGROUND event. If a task requests foreground on behalf of another task, that
task receives the SWITCH_FOREGROUND event.

For example, see bouncer.c.

RimSendMessage

Enables applications to send messages synchronously to other applications.

BOOL RimSendMessage(
TASK HTask,
MESSAGE * Msg)

Returns True if the message could be sent to the destination task; 0 (zero) if the destination
task was in a state where it could not receive a message immediately. True can only be
returned after the destination task has received the message. It is not guaranteed that
the receiving task is the first or only task that will run before RimSendMessage returns.

Attempting to send a message to a task that is not available generates an exception.

Description This function enables applications to send messages synchronously to other
applications. This function does not return until the destination task has received the
message. Tasks cannot synchronously send messages to themselves. Use the
asynchronous RimPostMessage instead. Refer to the Developer Guide for more
information on asynchronous and synchronous sends.

RimSendSyncMessage

Enables an application to send messages to other applications synchronously and
wait for a reply.

Parameters HTask The task handle requesting foreground.

Note: This function can be disabled and enaled. See the RimDisableAppSwitch and
RimEnableAppSwitch functions for more information.

Parameters HTask The task handle of the application which receives the message.

Msg A pointer to a MESSAGE structure.

Thread and communication functions

Operating System API Reference Guide 21

BOOL RimSendSyncMessage(
TASK HTask,
MESSAGE * Msg,
MESSAGE * ReplyMsg)

Returns True if the message is sent to a valid task, that task receives the message and does a
RimReplyMessage to the calling process. If the task being sent to is invalid, or is
terminated during the RimSendSyncMessage then false is returned. When false is
returned, the value placed in ReplyMsg is undefined.

Attempting to send a message to a task that is unavailable generates an exception.

Description The RimSendSyncMessage function enables an application to send messages to other
applications synchronously and wait for a reply. This function does not return
successfully until the message has been received and the receiver has completed a
RimReplyMessage to the sender. This function call can cause applications to block
indefinitely and should be used with caution if the application doing the send is also
receiving messages. For more information, refer to RimReplyMessage, and
RimToggleMessageReceiving.

RimSetPID

Enables a process to change its own attributes.

void RimSetPID(PID * Pid)

Description This function enables a process to change its own attributes. The name, enable/disable
task switching flag, and the display icon are used during application server
task-switching, and can be changed dynamically. If the Name field is NULL, the field is
not modified.

For example, see ping.c.

RimSetReceiveFromDevice

Enables an application to specify the devices from which it wants to receive messages.

void RimSetReceiveFromDevice(
DWORD Device,
BOOL ReceiveFrom)

Parameters HTask The task handle of the application to which the message is to be sent.

Msg A pointer to the message to be sent.

ReplyMsg A pointer to a MESSAGE structure that will be populated by the reply
message from the receiving task.

Parameters Pid A pointer to the PID structure.

Chapter 2: System API

22 BlackBerry Software Development Kit

Description When message receiving is turned off and on by calling RimToggleMessageReceiving,
all settings made using RimSetReceiveFromDevice are restored.

RimTaskYield

Enables an application to yield control while allowing other applications to run.

void RimTaskYield()

Description Yielding control is done primarily during intensive CPU operations so that other
applications can run. If there are no other applications with messages pending,
RimTaskYield returns immediately.

For example, see bouncer.c and ping.c.

RimTerminateThread

Enables a thread to terminate itself.

void RimTerminateThread()

Description This function does not return. Calling this function has the same effect as returning
from the main function of a thread.

Parameters Device Defines from which device to receive or stop receiving.

ReceiveFrom Determines whether to start or stop receiving from the specified
device.

Thread and communication functions

Operating System API Reference Guide 23

RimToggleMessageReceiving

Enables an application to reject all incoming messages, or to accept them again after
rejecting them for a period of time

void RimToggleMessageReceiving(BOOL ReceiveMessages)

Description This function does not change which messages are sent to the application, which is
done with RimSetReceiveFromDevice. Any attempt to send a message to an
application that has turned off message receiving fails and the sending call returns
false.

Refer to "RimSetReceiveFromDevice" on page 21 for more information.

RimWaitForSpecificMessage

Enables an application to receive a specific message at a critical time.

BOOL RimWaitForSpecificMessage(
MESSAGE * Msg,
const MESSAGE * Compare,
DWORD Mask)

Returns A valid mask causes the function to return true; see RimGetMessage for information on
the values for mask. If the mask is not valid, the function returns false.

Description RimWaitForSpecificMessage enables an application to receive a specific message at a
critical time. All other messages sent to the calling application are queued until
RimGetMessage is called. When using this function call, care should be taken not to
allow too many messages to back up in the message queue.

Refer to "RimSetReceiveFromDevice" on page 21 for more information.

Parameters ReceiveMessages Determines whether the application is going to receive
messages or turn message receiving off.

Parameters Msg A pointer to the message structure that will be populated by receiving
a message.

compare A pointer to a message structure that will be compared with incoming
messages.

Mask A bit mask made up from MC_DEVICE, MC_EVENT, and MC_SUBMSG. This
mask determines which parts of the message structure to compare.

Chapter 2: System API

24 BlackBerry Software Development Kit

Memory allocation functions
This section describes memory allocation functions, listed in alphabetical order.

RimFree .. 24
RimGetMaxAllocSize ... 24
RimMalloc ... 24
RimMemoryRemaining ... 25
RimRealloc .. 25

RimFree

De-allocates memory from the far heap and returns the block to the free list.

void RimFree(void * Block)

RimGetMaxAllocSize

Retrieves the size of the largest block of memory that can be allocated in the heap.

DWORD RimGetMaxAllocSize()

Returns The number of allocated bytes in the heap.

Description Because of fragmentation, the largest single block of memory that can be allocated is
typically less than the total memory that can be allocated. For example, you might be
able to allocate a 20-KB block plus a 10-KB block for a total of 30 KB, but you might
not be able to allocate a single 30-KB block.

RimMalloc

Allocates memory.

void * RimMalloc(DWORD Size)

Returns A void pointer to a block of allocated memory or NULL if insufficient memory is
available.

Parameters Block A pointer to the memory block to be freed.

Note: Attempting to free an invalid block not allocated by RimMalloc (malloc) can result in
subsequent failure when allocating memory.

Parameters Size The size of the block of memory to allocate.

Memory allocation functions

Operating System API Reference Guide 25

Description The memory block can be larger than the size requested due to the alignment and
information required. A size of zero returns a valid pointer with a zero length size.
Applications should always check the return value.

RimMemoryRemaining

Indicates the total number of bytes in unallocated blocks in the heap.

DWORD RimMemoryRemaining()

Returns The number of free bytes in the heap.

Description This function returns the total number of bytes in unallocated blocks in the heap. This
is not equal to the maximum space that can be allocated using RimMalloc, because the
free space might be fragmented into two or more free blocks. It does give an estimate
of the aggregate total number of bytes which can be allocated using RimMalloc, but
this calculation must take into account the system overhead of 10 bytes for each block,
and the fact that block sizes (including overhead bytes) are always rounded up to the
next multiple of 8 bytes.

RimRealloc

Reallocates memory.

void * RimRealloc(void * Ptr, DWORD Size)

Returns A void pointer to a block of allocated memory, or NULL if a block of the requested
size could not be created.

Description The block can be larger than the size requested due to the alignment and information
required. A size of zero returns a valid pointer with a zero length size. Applications
should always check the return value. The system can move the contents of the old
block of memory if necessary to find the requested space. A NULL return simply
means that a block of the requested size could not be created. The existing block of
memory (as referenced by block) is untouched in this case. If block is NULL when
this function is called, the function acts as RimMalloc.

Parameters Ptr A pointer to the memory block to grow or shrink.

Size The desired new size of the block.

Chapter 2: System API

26 BlackBerry Software Development Kit

Time functions
This section describes functions related to date and time, listed in alphabetical order.

RimGetAlarm .. 26
RimGetDateTime .. 26
RimGetIdleTime ... 27
RimGetTicks .. 27
RimKillTimer .. 27
RimSetAlarmClock .. 28
RimSetDate .. 28
RimSetTime ... 28
RimSetTimer ... 29
RimSleep .. 30

RimGetAlarm

Finds the earliest enabled alarm set by any application.

TASK RimGetAlarm(TIME * Time)

Returns The handle of the task that has set the earliest future alarm date and time using
RimSetAlarmClock. If no alarms were enabled, RimGetAlarm returns 0.

Description This function is used to find the earliest enabled alarm set by any application.

RimGetDateTime

Gets the date and time from the real-time clock.

void RimGetDateTime(TIME * Time)

Description This function gets the date and time from the real-time clock. The time is always in
24-hour format.

The earliest date and time that can be returned by RimGetDateTime is 01/01/1998
00:00:00. The latest date and time which can be returned by RimGetDateTime in the
embedded system is 12/31/2090 23:59:59. The Windows simulator, however, uses
mktime which can only handle a date from January 1, 1970, to midnight, February 5,
2036. Therefore, RimGetDateTime in the Windows simulator cannot return any date
later than February, 5, 2036.

For example, see realtime.c.

Parameters Time A pointer to a time structure to be completed with the settings for
the next alarm.

Parameters Time A pointer to a time structure.

Time functions

Operating System API Reference Guide 27

RimGetIdleTime

Retrieves the number of seconds since the previous key or trackwheel event.

long RimGetIdleTime()

Returns The number of seconds since the last key or trackwheel event. A value of 300, for
example, would indicate 5 minutes.

Description The value returned by this function can be used to decide when to enable a screen
saver, or to implement a security timeout.

RimGetTicks

Tracks the amount of time since the handheld was turned on.

long RimGetTicks()

Returns The number of time ticks, in 10 millisecond increments, since the handheld was
turned on. A value of 5000, for example, would indicate 50 seconds.

Description The value returned by this function can be used to reference absolute timers
(RimSetTimer). By obtaining this value, you can avoid the potential drift in periodic
timers if the system does not process the timers fast enough.

For example, see regmess.c.

RimKillTimer

Cancels a timer that was previously set by the application.

void RimKillTimer(DWORD TimerID)

Description This function cancels a timer that was previously set by the application. The TimerID
should match the value passed to a previous call to RimSetTimer. The caller will not
receive more timer device messages with the specified TimerID after the call returns,
even if the timer message was already in the receiving task�s message queue before
RimKillTimer was called.

For examples, see bouncer.c and regmess.c.

Parameters TimerID The identifier of the time to be cancelled.

Chapter 2: System API

28 BlackBerry Software Development Kit

RimSetAlarmClock

Sets the time for an application to be notified when that date and time has expired.

BOOL RimSetAlarmClock(TIME * Time, BOOL Enable)

Returns True if the alarm was set or false if there was an error.

Description This function sets the time for an application to be notified when that date and time
has expired. When the time has expired, the alarm_expired event is sent to the task.
To enable the alarm clock, use true for the Enable parameter. To disable the alarm
clock, use false for the enable parameter.

For example, see realtime.c.

RimSetDate

Sets the date on the real-time clock.

BOOL RimSetDate(TIME * Time)

Returns True if the date was set or false if the date was incorrectly formatted.

For example, see realtime.c.

RimSetTime

Sets the time on the device real-time clock.

BOOL RimSetTime(const TIME * Time)

Returns True if the time was set or false if the time was incorrectly formatted.

Description This function sets the time on the device real-time clock. The programmed time must
be in 24-hour format.

Parameters Time A pointer to a TIME structure.

Enable Disables or enables the alarm clock.

Note: Each application can set it own alarm time.

Parameters Time A pointer to a TIME structure.

Parameters Time A pointer to a TIME structure.

Time functions

Operating System API Reference Guide 29

The TIME structure includes a byte which carries time zone information. The value
stored in the TIME structure (excluding the time zone byte) is the local time on the
device. To convert to GMT, the offset given by the time zone must be subtracted from
the local time. Care must be taken to manage transitions into differing days, months,
and years.

For example, see realtime.c.

RimSetTimer

Sets a timer for the application.

BOOL RimSetTimer(
DWORD TimerID,
DWORD Time,
DWORD Type)

Returns True if the timer was set successfully or false otherwise.

Description This function sets a timer for the application. If a timer with the same timerID was
previously set by that application, it is cancelled. The application receives a message
from the Timer device after the specified period of time. For periodic timers, the
messages arrive after each time period beyond that.

The timerID is an arbitrary identifier that is assigned by, and is local to, the calling
task. There is no correlation between TimerIDs and the internal identifiers of the
global timer pool.

When the timer expires, the application receives a DEVICE_TIMER event.

For examples, see bouncer.c, clock.c, and regmess.c.

Parameters TimerID The identifier of the timer to be set.

Time The amount of time until the timer expires, and the time between
subsequent timer expirations for periodic timers, specified in 1/100
second increments.

Type This parameter can be one of three values.

Value Description

TIMER_ONE_SHOT The timer will expire once, in the time specified by time.

TIMER_PERIODIC The timer will expire with a period specified by time.

TIMER_ABSOLUTE The timer will expire when the absolute tick count reaches the
specified value. The absolute tick count can be obtained by
RimGetTicks().

Chapter 2: System API

30 BlackBerry Software Development Kit

RimSleep

Enables an application to stop running for a specified period of time.

void RimSleep(DWORD Ticks)

Description The RimSleep function enables an application to stop running for a specified period of
time. No messages wake the application so care must be taken to ensure that message
queues do not over flow.

Refer to "RimToggleMessageReceiving" on page 23 for more information.

User notification functions
This section describes user notification functions, listed in alphabetical order.

RimAlertNotify ... 30
RimGetAlertConfiguration ... 31
RimGetNumberOfTunes ... 31
RimGetTuneName ... 31
RimSetAlertConfiguration .. 32
RimSpeakerBeep .. 32
RimTestAlert ... 32

RimAlertNotify

Notifies the user of an event such as an incoming message, using audible tones,
vibrations, or both.

void RimAlertNotify(
int Notify,
int MaxRepetitions)

Description This function is used to notify the user of an event, such as an incoming message,
using audible tones, vibrations, or both. When generating tones, it is possible to
specify one of the six built-in tone sequences. The alert notify can be cancelled when
notify is set to kill_notify. The alert notify is automatically cancelled by the
operating system if the user presses a key while the notification is happening.

For example, see bouncer.c.

Parameters Ticks Defines the number of 10 millisecond increments that the task is to
sleep.

Parameters Notify Set to one of NO_NOTIFY, KILL_NOTIFY, or
TONE_SEQUENCE.

MaxRepititions This parameter can be used to limit how many times the tone
sequence is played. Set MaxRepititions to �1 to use the
system default number of repetitions.

User notification functions

Operating System API Reference Guide 31

RimGetAlertConfiguration

Determine the alert settings that are currently in effect.

void RimGetAlertConfiguration(AlertConfiguration * AlertConfig)

Description This function can be used by a user options application to determine the settings
currently in effect, in preparation for calling RimSetAlertConfiguration.

RimGetNumberOfTunes

Retrieves the total number of tunes (predefined and resource).

unsigned int RimGetNumberOfTunes()

Returns Total number of tunes available.

Description Valid indices for tunes are 0 to RimGetNumberOfTunes(). (Zero is silence.) By default
there are 6 tunes installed (TONE_SEQUENCE_1 through TONE_SEQUENCE_6). If
resource tunes were installed in a resource DLL, the number returned is 6 + number of
tunes in the resource DLL. The first resource tune installed starts at 7.

Example int num tunes;
// Obtain the total number of tunes installed
numTunes = RimGetNumberOfTunes ();

RimGetTuneName

Retrieves the name of a tune.

int RimGetTuneName(
unsigned int tuneIndex,
const char ** tuneName)

Returns TUNE_OK if tuneIndex is within the range of currently available tunes (see
RimGetNumberOfTunes). If the index is out of range, the function returns
BAD_TUNE_INDEX.

Description To play a tune, use RimAlertNotify().

Example const char * tuneName;
if (RimGetTuneName (3, &tuneName) == TUNE_OK) (

//Use tune Name
)

Parameters AlertConfig A pointer to an alertconfiguration structure to be filled with
the current configuration of RimAlertNotify. Refer to
"AlertConfiguration" on page 7 for more information.

Parameters tuneIndex Index of the tune in the range 0..RimGetNumberOfTunes() -1.

tuneName A pointer to a string that points to the tune name after the function
is executed.

Chapter 2: System API

32 BlackBerry Software Development Kit

RimSetAlertConfiguration

Specifies global changes to the behavior of RimAlertNotify.

void RimSetAlertConfiguration(const AlertConfiguration * AlertConfig)

Description This function can be used by a user options application to make global changes to the
behavior of RimAlertNotify.

RimSpeakerBeep

Generates speaker tone.

void RimSpeakerBeep(
int Frequency,
int Duration,
int Duty,
int Volume)

Description This function enables the generation of different tones. The duty cycle must be in the
range of 1 to 99. The default is 50.

As an example, the diagram below shows a 1000 Hz tone with a duty cycle of 75%.

RimTestAlert

Demonstrates RimAlertNotify configurations to the user.

void RimTestAlert(

Parameters AlertConfig A structure which sets the various options to be used when
RimAlertNotify is called. Refer to "AlertConfiguration" on page 7
for more information.

Parameters Frequency The frequency of the tone from 10 Hz to 10,200 Hz.

Duration The duration of the beep in milliseconds from 0 sec to 2.5 sec in 10
millisecond.

Duty The percentage ratio of the on/off frequency pulse from 1 to 99
percent.

Volume The beep volume, from 1 percent (softest) to 100 percent (loudest).

User notification functions

Operating System API Reference Guide 33

int notify,
AlertConfiguration * TrialConfig)

Description This function is used to demonstrate RimAlertNotify configurations to the user.
When the user accepts the settings, they can be set permanently by calling
RimSetAlertConfiguration.

Password functions
This section describes functions related to the handheld password. Functions are
listed in alphabetical order.

RimSetPassword ... 33
RimVerifyPassword ... 33
RimPasswordFailureCount .. 34

RimSetPassword

Sets the handheld password.

BOOL RimSetPassword(
const char *oldPasswordHash,
const char *newPasswordHash)

Returns True if the password is successfully changed; otherwise false.

RimVerifyPassword

Verifies the current handheld password.

BOOL RimVerifyPassword(const char *passwordHash)

Returns True if the value of PasswordHash is correct; false if the function call fails or if the
value of PasswordHash is incorrect.

Parameters notify Set this parameter to one of: NO_NOTIFY, KILL_NOTIFY,
TONE_SEQUENCE_1 through TONE_SEQUENCE_6.

TrialConfig The trial AlertConfiguration structure.

Parameters oldPasswordHash The hash of the current handheld password.

newPasswordHash The hash of the new password to set.

Parameters PasswordHash The hash of the current handheld password.

Chapter 2: System API

34 BlackBerry Software Development Kit

RimPasswordFailureCount

Retrieves the number of times that an incorrect password has been entered on the
handheld, since the last time the user entered the correct password.

DWORD RimGetPasswordFailureCount()

Returns True if the value of PasswordHash is correct; false if the function call fails or if the
value of PasswordHash is incorrect.

Description Calling RimSetPassword or RimVerifyPassword with the incorrect hash increments the
count; calling either function with the correct hash resets the count to zero.

Miscellaneous functions
This section describes miscellaenous system functions, listed in alphabetical order.

RimCatastrophicFailure .. 35
RimConfigureLEDs .. 35
RimDebugPrintf ... 36
RimGetBatteryLevel ... 36
RimGetBatteryStatus ... 37
RimGetDeviceInfo .. 37
RimGetLanguage ... 38
RimGetLoadedAppInfo .. 38
RimGetMessageRaw .. 39
RimGetOSversion ... 40
RimGetSetOfLanguages .. 41
RimHolsterStatus ... 41
RimInitiateReset ... 42
RimPowerDownHandled ... 42
RimRegisterForPowerDown .. 42
RimRequestFullPowerOff ... 42
RimRequestPowerOff .. 43
RimRequestStorageMode .. 43
RimSetLanguage .. 43
RimSetLed ... 44
RimSprintf ... 44
RimStackUsage ... 46
RimVsprintf ... 46

Miscellaneous functions

Operating System API Reference Guide 35

RimCatastrophicFailure

Handles unrecoverable application errors.

void RimCatastrophicFailure(char * FailureMessage)

Description This function is used to handle unrecoverable application errors.
RimCatastrophicFailure displays that an unrecoverable error has occurred on the
handheld, and prompts the user to push a key to cause the handheld to be reset.

This mechanism is used to handle error conditions that cannot be recovered without
resetting the system.

For example, see regmess.c.

RimConfigureLEDs

Configures LED lighting (duration, frequency, and brightness).

void RimConfigureLEDs(
int LED_On_Time,
int LED_Off_Time,
int DutyCycle)

Description This call is only available on the palm-sized RIM Wireless Handheld.

For example, see RimSetLed.

Parameters FailureMessage A pointer to a string to be displayed on the handheld.

Parameters LED_On_Time Length of time in milliseconds that the LED should remain on
(rounded to the nearest 8 ms).

LED_Off_Time Length of time in milliseconds that the LED should remain off
(rounded to the nearest 64 ms).

DutyCycle Sets the brightness of the LED while it is on. It is a percentage
of the length of LED_On_Time that the LED will be on. Valid
values are:

� LED_DUTY_12 for 12%

� LED_DUTY_25 for 25%

� LED_DUTY_50 for 50%

� LED_DUTY_100 for 100%

Chapter 2: System API

36 BlackBerry Software Development Kit

RimDebugPrintf

Prints formatted text to debug stream.

void RimDebugPrintf(const char * String, ...)

Description The RimDebugPrintf function formats and prints a series of characters and values to
the debug output stream, which can be displayed in the Output window of Developer
Studio. On the handheld, RimDebugPrintf has no effect. If arguments follow the
format string, the format string must contain specifications that determine the output
format for the arguments.

RimGetBatteryLevel

Indicates the percentage of battery life remaining.

DWORD RimGetBatteryLevel()

Returns The charge remaining in the battery, as a percentage.

Description The charge remaining in the battery is a good indication of how much operating time
is left.

Parameters String A format control string, as used in the standard library function printf.

Miscellaneous functions

Operating System API Reference Guide 37

RimGetBatteryStatus

Retrieves the current state of the battery or batteries.

DWORD RimGetBatteryStatus()

Returns A bitmask of a combination of the following flags:

Description This function is usually called upon receiving a BATTERY_UPDATE event from the
system. A return value of 0 means that the battery is fine.

RimGetDeviceInfo

Retrieves information about the handheld.

VOID RimGetDeviceInfo(DEVICE_INFO * Info)

Description Use this function to determine at runtime the type of device and network the
application is running on. See page 9 for information on the system structures, such as
the DEVICE_INFO structure.

Flag Description

BSTAT_DEAD Battery is at 0%

BSTAT_TOO_COLD Battery is too cold

BSTAT_TOO_HOT Battery is too hot

BSTAT_LOW™ Battery is low

BSTAT_NONE No AA battery (RIM 850™ and RIM 950™)

BSTAT_REVERSED AA battery is inserted backwards (RIM 850™ and RIM 950™)

BSTAT_NO_TURN_ON Device cannot turn on

BSTAT_NO_RADIO Radio cannot send

BSTAT_CHARGING Battery is charging

Parameters Info A pointer to a DEVICE_INFO structure that will receive the
information about the device.

Chapter 2: System API

38 BlackBerry Software Development Kit

RimGetLanguage

Retrieves language code.

int RimGetLanguage()

Returns The language code as last set by RimSetLanguage.

Description This function could be used by applications to customize country- or
language-dependent behavior.

RimGetLoadedAppInfo

Retrieves information about each application on the handheld.

void RimGetLoadedAppInfo(LoadedAppInfo * Info)

Description This function enables an application to determine which applications are loaded on
the handheld. This function does not work on the simulator.

Use the function as follows:

� Define a LoadedAppInfo structure with the LoadTableAddress field set to NULL.

� Call RimGetLoadedAppInfo with a pointer to this structure.

If LoadTableAddress is not NULL, the Name, VersionLS, VersionMS, Checksum,
TimeDateStamp and Size fields are valid.

� You can call the function again, without changing LoadTableAddress, to get
information about the next DLL

If LoadTableAddress is NULL, the end of the list has been reached.

Structure The LoadedAppInfo structure is as follows:

typedef struct {
 void *LoadTableAddress;
 DWORD VersionLS;
 DWORD VersionMS;
 DWORD Checksum;
 DWORD TimeDateStamp;
 DWORD Size;
 DWORD Spare2;
 DWORD Spare3;
 char Name[40];
} LoadedAppInfo;

The following table describes each field.

Parameters Info A pointer to a LoadedAppInfo structure that stores application
information.

Miscellaneous functions

Operating System API Reference Guide 39

RimGetMessageRaw

Retrieves the next message from its message queue without triggering any registered
callbacks.

TASK RimGetMessageRaw(MESSAGE * Msg)

Returns The task handle of the task that sent or posted the received message received.

Description The functional semantics of RimGetMessageRaw are identical to that of RimGetMessage.
The difference revolves around the handling of registered callbacks (see
RimRegisterMessageCallback). This function enables the calling application to obtain
the next message from its message queue without triggering any registered callbacks.
RimGetMessageRaw can be called from within a registered callback function.

Field Description

LoadTableAddress Address of the load table for the application; used internally by the
operating system.

VersionLS The Least Significant DWORD of the version number, as supplied by
the boot ROM.

VersionMS The Most Significant DWORD of the version number, as supplied by
the boot ROM.

Checksum The Checksum of the module, which enables a comparison of an
application loaded on the handheld with a DLL on the desktop.

TimeDateStamp The date and time when the DLL was created.

Size The total amount of flash used by this application.

Spare2 Reserved for future use.

Spare3 Reserved for future use.

Name[40] The name of the application, such as SerialDbAccess.dll.

Parameters Msg A pointer to a MESSAGE structure that receives the message.

Chapter 2: System API

40 BlackBerry Software Development Kit

RimGetOSversion

Compares the version of the SDK that an application was built with to the version of
the operating system that the application is running on.

DWORD RimGetOSversion()

Returns The operating system version. The version is as follows:
Version.Revision.Release.Build

These four values are packed into the DWORD value as follows:

Description The operating system version, at build time, is also available in the constant
OS_API_VERSION. This function can be used to compare the version of the SDK that an
application was built with to the version of the operating system on which the
application is running.

Value Description

Version Bits 31-24 (most significant bits)

Revision Bits 23-16

Release Bits 15-8

Build Bits 7-0

Miscellaneous functions

Operating System API Reference Guide 41

RimGetSetOfLanguages

Retrieves languages included in the localization DLL.

BOOL RimGetSetOfLanguages(AVAILABLE_LANGUAGES **LangList)

Returns True if the LangList pointer is set successfully; false otherwise.

Description This function sets a pointer to a structure that describes the languages included in the
localization DLL.

Structures The AVAILABLE_LANGUAGES structure is as follows:

typedef struct {
 const unsigned int VERSION;
 const unsigned int numLangs;
 const LANGUAGE_DEF * const langs[];
} AVAILABLE_LANGUAGES;

The LANGUAGE_DEF structure is as follows:

typedef struct {
 const char * const langName;
 const unsigned int intlLangId;
 const char * const langString[];
} LANGUAGE_DEF;

Refer to "RimGetLanguage" on page 38 for more information.

RimHolsterStatus

Retrieves status of handheld in or out of holster.

int RimHolsterStatus()

Returns IN_HOLSTER if the handheld is in its holster, or OUT_OF_HOLSTER if it is out of the
holster.

Description If the status changes while the handheld is not in POWER_OFF mode, all tasks are
notified of this by a DEVICE_HOLSTER message. This function can be used to detect the
state at POWER_UP if required.

Parameters LangList A pointer to an AVAILABLE_LANUAGES structure that receives the
message.

Chapter 2: System API

42 BlackBerry Software Development Kit

RimInitiateReset

Resets the handheld.

void RimInitiateReset()

Description This function causes the handheld to reset as if it was powering up.

RimPowerDownHandled

Enables the device to power down.

void RimPowerDownHandled()

Description Applications that call RimRegisterForPowerDown receive a POWER_OFF system event
during power down. After processing this message, RimPowerDownHandled should be
called to complete the power down process.

RimRegisterForPowerDown

Prevents the device from powering down until the application calls
RimPowerDownHandheld.

BOOL RimRegisterForPowerDown()

Returns True if successful; false otherwise.

Description Applications that call RimRegisterForPowerDown receive a POWER_OFF system event
during power down. After processing this message, call RimPowerDownHandheld to
complete the power down process.

RimRequestFullPowerOff

Sends a request to the handheld to turn power off.

BOOL RimRequestFullPowerOff()

Returns True if the power off sequence was started. In this case, a subsequent RimGetMessage
receives a POWER_OFF event.

False if the handheld cannot power down because the COM port is in use by an
application.

Description This function posts a POWER_OFF_REQUEST message to the System Task, which
then turns the radio off, blanks the LCD and sends a POWER_OFF notification to all
application tasks.

When the handheld is turned off by RimRequestFullPowerOff, an alarm does not turn
the handheld back on.

Refer to "RimRequestPowerOff" on page 43 for more information.

Miscellaneous functions

Operating System API Reference Guide 43

RimRequestPowerOff

Sends a request to the handheld to turn power off.

BOOL RimRequestPowerOff()

Returns True if the power off sequence was started. In this case, a subsequent RimGetMessage
receives a POWER_OFF event. Otherwise, the function returns false if power down is
not possible as the COM port is owned by an application. This prevents events such
as auto shut-off from spontaneously shutting the handheld down while
synchronizing or while connected to the RIM Wireless Handheld simulator.

Description This function posts a POWER_OFF_REQUEST message to the System Task, which
then turns the radio off, blanks the LCD, and sends a POWER_OFF notification to all
application tasks.

When the handheld is turned off by RimRequestPowerOff, an alarm turns the
handheld back on. Refer to "RimRequestFullPowerOff" on page 42 for more
information.

For example, see bouncer.c.

RimRequestStorageMode

Sends a request to put the handheld into a storage state to preserve the battery.

BOOL RimRequestStorageMode()

Returns Returns true if the handheld is placed into storage mode; otherwise false.

Description This function electronically disconnects the Lithium battery to prevent it from
draining over a long period of inactivity. The real-time clock will probably drift
during the time the handheld is in this state.

The only way to power up the device after this call is to press the reset button on the
back of the device or to place it in a charging cradle.

This function is only available on the palm-sized Wireless Handheld.

RimSetLanguage

Sets language code.

void RimSetLanguage(unsigned int Language)

Description This function provides a method for customizing country- or language-dependent
behavior.

Parameters Language The language code, depending on which language DLLS are loaded.

Chapter 2: System API

44 BlackBerry Software Development Kit

RimSetLed

Sets the state of either the coverage LED or the message LED.

void RimSetLed(
int LedNumber,
int LedState)

Description This function is only available on the palm-sized Wireless Handheld.

RimSprintf

Formats text into a buffer.

int RimSprintf(
char * Str,
int Maxlen,
char * Fmt,
...)

Returns The number of characters placed into Buffer, excluding terminating NULL character.
�1 is returned if there was insufficient space, in which case Maxsize characters have
been placed into the buffer.

Description This function is similar to the standard C function sprintf, except with a buffer size
parameter added. Field specifications are in the form:

% [-] [0] [width] [.precision] [1] format

(Optional parts are in []. Do not include the [] characters)

Parameters LedNumber The LED to be set, either LED_COVERAGE for the coverage LED or
LED_MESSAGE for the message LED.

LedState One of LED_OFF, LED_ON, or LED_BLINK.

Parameters Str The supplied buffer where the formatted string is to be placed.

Maxlen The maximum number of characters that can be placed into the
buffer.

Fmt The format string used to determine the format of the data.

... Following the format string is the list of parameters as necessary to
supply information to the format string.

Note: If -1 is returned the NULL termination has not been added to the buffer.

Miscellaneous functions

Operating System API Reference Guide 45

For examples, see hello.c, ping.c, realtime.c, and regmess.c.

Format
specifier

Description

- This left-justifies the field; it is right-justified otherwise.

0 Pad with ‘0’ to the width of the field, only if it is right justified. The default is to
use spaces.

width Specify the minimum width of the formatted data for this field.

precision For numbers, specify the minimum number of digits to display. For strings,
specify the maximum number of characters to display.

l Indicate that the number to be formatted is a long integer value.

format a format type, one of:

d Data is an integer, displayed in decimal format.

i Data is an integer, displayed in decimal format.

b Data is an integer, displayed in binary format.

o Data is an integer, displayed in octal format.

u Data is an unsigned integer, displayed in decimal format.

x Data is an integer, displayed in hexadecimal format, using lowercase
letters.

X Data is an integer, displayed in hexadecimal format, using uppercase
letters.

s Data is a pointer to a string; if a precision is not specified, the string
must be NULL-terminated.

c Data is a character.

Chapter 2: System API

46 BlackBerry Software Development Kit

RimStackUsage

Helps choose an appropriate value for the task stack size.

DWORD RimStackUsage()

Returns The maximum stack size used by the current task since the previous call to
RimStackUsage. This number includes the stack space required by RimStackUsage
itself.

Description This function can be used to help choose an appropriate value for the task stack size.
The task stack size is specified as the constant appstacksize for PagerMain functions
or as an parameter to RimCreateThread for other functions.

RimVsprintf

Formats text into a buffer.

int RimVsprintf(
char * Buf,
int Maxsize,
char * Fmt,
va_list Argp)

Description This function behaves similarly to the standard C library function vsprintf and
identically to RimSprintf. Refer to "RimSprintf" on page 44 for more information.

Note: Since this function checks for a high-water mark, the results returned on the first call by
any task might not be meaningful.

Parameters Buf The supplied buffer where the formatted string is to be placed.

Maxsize The maximum number of characters that can be placed in the buffer.

Fmt The format string used to determine the format of the data.

Agrp A pointer to a variable parameter list. The list of parameters is
provided to supply information to the format string.

Chapter 3
File System API

The File System API provides access to the persistent storage on the
handheld.

If your application requires additional functionality, you can use the
Database API. Refer to the Database API Reference Guide for more
information.

Structures
The following structures are used by the database / file system APIs.

FileInfoType ... 47
FileSysInfoType ... 48

FileInfoType

The FileInfoType structure (used by DbFileInfo) looks like this:

typedef struct {
unsigned Pos;
unsigned Length;
HandleType Db;

} FileInfoType;

Field Description

Pos This field contains the current read/write position in the file
(zero-based). The range of Pos is from 0 to Length, inclusive.

Length This field contains the length of the file, in bytes. Immediately
after DbFileOpen, the Length is equal to the database length,
i.e. to the total size of all the database records. The Length can
be increased by performing DbFileWrite or DbFileSeek.

Db Database handle of the file

Chapter 3: File System API

48 BlackBerry Software Development Kit

FileSysInfoType

The FileSysInfoType structure (used by DbFileSysInfo) looks like this:

typedef struct {
void * Disk;
unsigned NumOfBlock;
unsigned BlockSize;
unsigned NumOfClean;

} FileSysInfoType;

Functions
The following file system functions are listed alphabetically.

DbAddOrphan .. 49
DbAddRec ... 49
DbAndRec ... 51
DbDelete .. 52
DbDeleteRec .. 52
DbFileClose ... 53
DbFileInfo .. 54
DbFileOpen ... 54
DbFileRead .. 55
DbFileSeek ... 55
DbFileSysInfo .. 56
DbFileWrite ... 57
DbFindNext ... 58
DbFirstRec ... 59
DbFreeRec ... 59
DbFreeSpace .. 59
DbGetHandle .. 60
DbMaxHandles ... 61
DbMaxNewRecSize ... 61
DbName ... 62
DbNextRec .. 62
DbPointTable .. 63

Field Description

Disk Starting address of the file system’s data

NumOfBlock Number of flash memory blocks in the file system

BlockSize Size of each flash memory block in the file system

NumOfClean Number of cleanups that have taken place since the handheld was
turned on

Functions

Operating System API Reference Guide 49

DbPointTableEdition ... 63
DbRecSize .. 63
DbReplaceOrphan .. 64
DbReplaceRec ... 64
DbSecure .. 65
DbSize .. 65

DbAddOrphan

Adds an orphan record to a database.

STATUS DbAddOrphan(
HandleType db,
HandleType orphan)

Returns One of the following return codes is returned:

DB_OK
DB_ERR_BAD_HANDLE
DB_ERR_NOT_DIR
DB_ERR_NOT_ORPHAN

Description This function is atomic. The record is either appended to the database or the database
is unchanged. No intermediate state is visible. Data consistency is preserved if a
system error occurs when the function is executing.

This function cannot be used to move a record from one database to another. To do
this, create a new record, copy the contents of the old record (using DbAddRec) and
delete the old record.

An orphan record is a database record that has not yet been assigned to any database.
This is useful for allocating temporary data in the file system.

DbAddRec

Creates a new record (database or orphan).

HandleType DbAddRec(
HandleType db,
unsigned size,
const void * data)

Parameters db A database handle.

orphan The handle to the orphan record that is to be appended to the database.

Chapter 3: File System API

50 BlackBerry Software Development Kit

Returns A non-negative handle to the newly-created record, or one of the following negative
error codes:

DB_ERR_BAD_SIZE
DB_ERR_NO_HANDLE
DB_ERR_NO_SPACE
DB_ERR_BAD_HANDLE
DB_ERR_NOT_DIR

Description This function is atomic. The record is either created completely or the database is
unchanged. No intermediate state is visible. Data consistency is preserved if a system
error occurs when the function is executing.

It is valid for data to point to portions of the file system, for example, through the
memory mapped file access mechanism; however, the entire operation is slightly
slower. In order to write to the flash memory, the memory must be configured to
preclude simultaneously reading it. As a result, the function must copy from flash
memory to flash memory through RAM.

An orphan record is a database record that has not yet been assigned to any database.
This is useful for allocating temporary data in the file system. It is also useful if
creating a record and adding it to a database should be kept separate. Note that
orphan database records are regular database records except that they are not
associated with any file. Orphan records are automatically deleted after a reset; it is
not possible to get the handle to an orphaned record.

Parameters db The handle to the database to which the record is to be appended; a
negative value indicates that an orphan record should be created.

size The size of the record, in bytes. It must be between 0 and 216-2, inclusive;
in addition, the maximum possible record size is limited due to flash
memory fragmentation. Refer to "DbMaxNewRecSize" on page 61 for
more information.

data The pointer to the data to be written into the new record; if it is NULL, the
data is assumed to have all bits set to 1 (this is convenient when used
with the DbAndRec function).

Warning: The handle returned by this function persists only for the lifetime of the database on
the particular system; it is intended for temporary database identification only. Do not store
record or database handles in the permanent data because the data cannot be meaningfully
copied to another system.

Functions

Operating System API Reference Guide 51

DbAndRec

Logical AND of data to an existing record.

STATUS DbAndRec(
HandleType rec,
const void * mask,
unsigned size,
unsigned offSet)

Returns One of the following return codes:

DB_OK
DB_ERR_BOUNDS
DB_ERR_BAD_HANDLE
DB_ERR_IS_DIR

Description Changes made by the DbAndRec function are only partially verified. It is verified that
bits are set to 0 as specified by the data mask, but not that all remaining bits are
unchanged. In this case, you must ensure that the data is correctly interpreted.

This function is not atomic. If a system error occurs when the function is executing,
the record can be left in a partially updated state. The update order is not specified.
You must ensure that the data is correctly interpreted.

DbAndRec should only be used with non-critical, transient data. DbAndRec is not atomic
and changes are not verified completely. The advantage of DbAndRec is that it
performs record modification in place, which uses less RAM and is faster than
copying the record, modifying the copy and then calling DbReplaceRec to make the
changes permanent.

Parameters rec The record to be modified.

mask A pointer to the data mask to be AND-ed to the current contents of the
record. If it is NULL, the data mask is assumed to have all bits cleared
to zero.

size The data mask size in bytes.

offSet The offset of the area to be AND-ed to from the beginning of record.

Note: As a pre-condition, offset+size must be less than or equal to the record size.

Chapter 3: File System API

52 BlackBerry Software Development Kit

DbDelete

Deletes a database.

STATUS DbDelete(char * fileName)

Returns One of the following return codes is returned:

DB_OK
DB_ERR_FILE_OPEN
DB_ERR_BAD_NAME
DB_ERR_NOT_EXIST

Description When a database is deleted, its records are also deleted. In addition, the handles
associated with the database (that is, the database handle and all the record handles)
are immediately made available for reuse.

The system cannot detect erroneous use of outdated handles. Applications should not
maintain references to deleted items. Immediately after an item is deleted, the
corresponding entry in the handle mapping table is set to NULL, so that applications
are more likely to detect the deleted item. Due to the limited number of handles, these
handles are eventually reused for another purpose.

The following sample code demonstrates the use of this function:

char * name = "timestamps";
ForgetHandles (name);
DbDelete (name);

DbDeleteRec

Deletes a record.

STATUS DbDeleteRec(
HandleType db,
HandleType rec)

Returns One of the following return codes is returned:

DB_OK
DB_ERR_BAD_HANDLE
DB_ERR_NOT_DIR
DB_ERR_IS_DIR

Parameters fileName A pointer to the name of the database to be deleted from the file
system.

Parameters db The handle to the database containing the record; for an orphan record,
this parameter is a negative value.

rec The record to be deleted.

Functions

Operating System API Reference Guide 53

Description This function is atomic. The record is either completely deleted from the database or
the database is unchanged. No intermediate state is visible. Data consistency is
preserved if a system error occurs when the function is executing.

Deleting a record frees the record handle for immediate reuse.

Generally, the cost of a delete is, on average, half the cost of the general purpose
update. It is more efficient to let DbDelete delete all of the records of a database at
once than to call DbDeleteRec repeatedly to delete them one at a time.

DbFileClose

Closes a file.

STATUS DbFileClose(
FileType file,
BOOL trim)

Returns One of the following return codes:

DB_OK
DB_ERR_FILE_CLOSED
DB_ERR_BAD_FILE

Description The database updates performed by this function or by previous calls to DbFileSeek
or DbFileWrite are not atomic. They are not guaranteed to be permanent until the
DbFileClose returns DB_OK. If an error occurs when the function is executing, the
database can be left in a partially updated state. The update order is not specified.
You must ensure that the data is correctly interpreted.

Parameters file A file number.

trim This parameter has a value of true or false:
� true: The partially used last record is trimmed. This makes the

database length equal to the file DbFileClose immediately before
DbFileClose.

� false: The partially used last record is not altered, and the database
length might be greater than the file Length immediately before
DbFileClose.

This parameter is important if the database was extended by DbFileSeek
or DbFileWrite. In this case the last appended record (of size
newRecSize) is only partially written with data and the rest of the record
is filled with bytes consisting of all ones.

Chapter 3: File System API

54 BlackBerry Software Development Kit

DbFileInfo

Retrieves information about a file.

BOOL DbFileInfo(
FileType file,
FileInfoType * fileInfo)

Returns True if the file exists; false otherwise.

Description For a description of the FileInfoType structure, see �Structures� on page 47.

DbFileOpen

Opens a file.

FileType DbFileOpen(
HandleType db,
unsigned newRecSize)

Returns A non-negative file number (as distinct from a database or record handles), or one of
the following negative error codes:

DB_ERR_BAD_HANDLE
DB_ERR_BAD_SIZE
DB_ERR_FILE_OPEN
DB_ERR_NOT_DIR
DB_ERR_PRIV_HANDLE
DB_ERR_NO_FILE

Description Call DbGetHandle before calling DbFileOpen to obtain the database handle and create
the database if it does not exist.

The database used to implement the file can contain previously created data arranged
in a collection of records of arbitrary length. If the file mechanism is used to overwrite
some of this data, the file view of the database preserves the previously existing
record structure. If the file is extended beyond the end of the database, then all new
records are of length newRecSize. For more information, refer to DbGetHandle.

Parameters file A file number.

fileInfo A pointer to a buffer into which the file information should be
written.

Parameters db The handle to the database which is to be opened as a streamed
file.

newRecSize The size of new records to be written to the database whenever
writing to the file requires extending the underlying database.
This value must be between 1 and 216 �2, inclusive. At any
particular instant, the maximum possible record size is
additionally limited due to flash memory fragmentation. Refer to
"DbMaxNewRecSize" on page 61 for more information.

Functions

Operating System API Reference Guide 55

DbFileRead

Reads bytes from file.

int DbFileRead(
FileType file,
void * data,
unsigned size)

Returns The non-negative number of bytes actually read, or one of the following negative
error codes:

DB_ERR_BAD_HANDLE
DB_ERR_FILE_CLOSED

Description Reading is performed sequentially from the current file position and is independent
of the record structure of the underlying database.

The data is read up to the end of the file or until the number of bytes specified by the
size parameter have been read. It is not an error to request to read past the end of the
file. If the current position prior to DbFileRead was at the end of the file, no bytes are
read, and the return value is zero.

DbFileSeek

Sets the current position in a file, possibly extending the file.

STATUS DbFileSeek(
FileType file,
unsigned pos)

Returns One of the following return codes is returned:

DB_OK
DB_ERR_BAD_FILE
DB_ERR_FILE_CLOSED
DB_ERR_NO_HANDLE
DB_ERR_NO_SPACE

Parameters file A file number.

data A pointer to the destination buffer.

size The number of bytes to be read from the file.

Parameters file A file number.

pos The desired zero-based current position.

Chapter 3: File System API

56 BlackBerry Software Development Kit

Description If pos is greater than Length, the file is extended, with pos – Length bytes consisting
of all ones. Both the current position and Length is made equal to the supplied pos. In
this case the appended records have the size specified by the newRecSize parameter of
DbFileOpen. The last appended record might be only partially used, with the
consequence of Length being smaller than the database length. This is important
because Length is not stored permanently, unless DbFileClose is performed with
trim equal to true.

The file extension is subject to having enough free space at the moment for all the new
records required, each of a size newRecSize, that is, the system does not attempt to
create a smaller record if there is not enough space. Instead, DB_ERR_NO_SPACE is
returned.

The file extension process is not atomic, and it is not guaranteed to be permanent until
the subsequent DbFileClose returns DB_OK. If a system error occurs before DB_OK is
returned, the database might be left in a partially updated state. In this case, you must
ensure that the data is correctly interpreted.

Seeking forward is significantly faster than seeking backward.

DbFileSysInfo

Retrieves information about the file system.

void DbFileSysInfo(FileSysInfoType * FileSysInfo)

Description For a description of the FileSysInfoType structure, see �Structures� on page 47.

The following sample code demonstrates the use of this function:

FileSysInfoType FileSysInfo;
DbFileSysInfo (&FileSysInfo);
NumBefore = FileSysInfo.NumOfClean;
// do some file system operations
DbFileSysInfo (&FileSysInfo);
NumOfCleanups = FileSysInfo.NumOfClean - NumBefore;

Parameters FileSysInfo A pointer to the buffer to which the file system information
should be written.

Functions

Operating System API Reference Guide 57

DbFileWrite

Writes bytes to a file.

STATUS DbFileWrite(
FileType file,
const void * data,
unsigned size)

Returns One of the following return codes:

DB_OK
DB_ERR_BAD_FILE
DB_ERR_FILE_CLOSED
DB_ERR_NO_HANDLE
DB_ERR_NO_SPACE

Description The database updates performed by this function are not atomic, and they are not
guaranteed to be permanent until the subsequent DbFileClose returns DB_OK. If a
system error occurs, the database can be left in a partially updated state. The update
order is not specified. You must ensure that the data is correctly interpreted.

The file extension is subject to the amount of free space available for all the new
records required, each of a size newRecSize. The system does not attempt to create a
smaller record if there is not enough space; instead, DB_ERR_NO_SPACE is returned.

This function writes the supplied data to the file, starting at the current position. It
overwrites data in previously created database records. The previous record structure
is preserved and the record lengths are not changed, unless the database needs to be
extended. In this case, the appended records have the size specified by the newRecSize
parameter of the DbFileOpen function. The last appended record might be only
partially used, with the consequence of Length being smaller than the database
length. This is important because the Length is not stored permanently, unless
DbFileClose is performed with trim equal to true.

Parameters file A file number.

data Pointer to the data to be written to the file. This cannot be a direct data
pointer to flash memory.

size Size of the data, in bytes.

Chapter 3: File System API

58 BlackBerry Software Development Kit

DbFindNext

Retrieves a handle to the next database.

HandleType DbFindNext(
HandleType db,
const char * pattern)

Returns A non-negative handle to the next database matching the pattern, or one of the
following negative error codes:

DB_NO_DB
DB_ERR_BAD_HANDLE
DB_ERR_NOT_DIR

Description Directory entries are ordered according to the time of creation. This order persists
across handheld resets.

The following sample code demonstrates the use of this function:

// Try to construct a unique database name.
char name = "temp0.dat";
while (DbFindNext (-1, name) != DB_NO_DB) {
 if (name[4] = '9')
 return ERROR_COND;
 name[4]++;
}
HandleType newDb = DbGetHandle (name);

Parameters db A handle to a database indicating the point after which the database
directory is to be searched. A negative value indicates that the search
is to begin with the first directory entry.

pattern A pointer to a pattern used to filter the names of the databases in the
directory. The asterisk (*) wildcard character matches any number of
characters, including no characters. A literal asterisk character is
represented as * and the backslash character is represented as \\.

Warning: The handle returned by this function persists only for the lifetime of the database on
the particular system; it is intended for temporary database identification only. Do not store
record or database handles in the permanent data because the data cannot be meaningfully
copied to another system.

Functions

Operating System API Reference Guide 59

DbFirstRec

Retrieves a handle to the first database record.

HandleType DbFirstRec(HandleType db)

Returns A non-negative handle to the first record in the database, or one of the following
negative error codes:

DB_NO_REC
DB_ERR_BAD_HANDLE
DB_ERR_NOT_DIR

Description This function can also be used on the database of directory entries. Doing so returns
the handle to the first database entry in the directory.

DbFreeRec

Retrieves number of free handles.

unsigned DbFreeRec()

Returns The number of unused handles.

Description Each new database and each new record uses exactly one handle. It is possible to use
all of the available handles.

The following sample code demonstrates the use of this function:

while (NewData (&Data)) {
 if (DbFreeRec () == 0)
 DeleteOldData ();
 DbAddRec (MyDB, DataSize, &Data);

DbFreeSpace

Retrieves the number of unused bytes in a database.

unsigned DbFreeSpace()

Returns The total number of unused flash memory bytes in the file system.

Description You cannot create a record as large as the total free space due to system overhead and
flash memory fragmentation. DbFreeSpace can indicate space management problems.

The following sample code demonstrates the use of this function:

if (DbFreeSpace () < MinFreeSpace)

Parameters db A database handle.

Warning: The handle returned by this function persists only for the lifetime of the database on
the particular system; it is intended for temporary database identification only. Do not store
record or database handles in the permanent data because the data cannot be meaningfully
copied to another system.

Chapter 3: File System API

60 BlackBerry Software Development Kit

EmptyUserTrash ();

DbGetHandle

Retrieves a handle to the database, or creates a handle if one does not exist.

HandleType DbGetHandle(const char * fileName)

Returns A non-negative handle to the named database, or one of the following negative error
codes:

DB_ERR_NO_SPACE
DB_ERR_NO_HANDLE
DB_ERR_BAD_NAME

Description This is the only function that can create a new database (or a streamed file). If the
named database does not exist then it is created and assigned a new handle.

The cost of determining the database handle from a string representation of the
database name is 10 to 100 times the cost of referencing a single record given the
database handle. As a result, application programs should typically retain the handles
to databases when they are being actively used.

The theoretical maximum length of a database name is 216-5 characters, or the
maximum record size and a small amount of overhead. The database name is stored
as a record in the database.

The following sample code demonstrates the use of this function:

HandleType myDb, newRec; myDb = DbGetHandle ("timestamps");

for (i = 0; i < 150; i++)
newRec = DbAddRec (myDb, sizeof (long), RimGetTicks ());

Parameters fileName The name of the database to be created or accessed.

Warning: The handle returned by this function persists only for the lifetime of the database on
the particular system; it is intended for temporary database identification only. Do not store
record or database handles in the permanent data because the data cannot be meaningfully
copied to another system.

Functions

Operating System API Reference Guide 61

DbMaxHandles

Retrieves the maximum number of record and file handles.

void DbMaxHandles(
int * MaxRecHandles,
int * MaxFileHandles)

DbMaxNewRecSize

Retrieves the maximum possible size of a new record.

unsigned DbMaxNewRecSize(RecKind NewRec)

Returns The maximum possible size of a new record of the specified kind, in bytes.

The following sample code demonstrates the use of this function:

if (DbMaxNewRecSize (NORMAL) < DataSize)
MustSliceData ();

Parameters MaxRecHandles A pointer to a 32-bit integer variable where the maximum
number of record handles will be stored. A record handle is
used to identify individual records, including database
header records, within the file system.

MaxFileHandles A pointer to a 32-bit integer variable where the maximum
number of file handles will be stored. A file handle is used to
identify a database currently open for streamed access.

Parameters NewRec RecKind is an enumerated type, so NewRec is the kind of record to be
created; one of:
NORMAL � a normal database record
ORPHAN � an orphan record
DB_NAME � a database directory entry

Chapter 3: File System API

62 BlackBerry Software Development Kit

DbName

Retrieves the database name from a handle.

const char * DbName(HandleType db)

Returns A pointer to a read-only, NULL-terminated character string that contains the name of
the database, or NULL if db is not a valid database handle.

The following sample code demonstrates the use of this function:

// Collect all database names starting with “temp”
HandleType currDb;
currDb = DbFindNext (-1, "temp*");

while (currDb >= 0) {
 char * name = DbName (currDb);
 collect (name);
 currDb = DbFindNext (currDb, "temp*");
}

DbNextRec

Retrieves the handle to the next database record.

HandleType DbNextRec(HandleType prevRec)

Returns A non-negative handle to the next record in the database, or one of the following
negative error codes:

DB_NO_REC
DB_ERR_BAD_HANDLE

Description This function returns the handle to the record immediately following the record
specified by prevRec. An orphan record does not have a successor.

The DbNextRec function can also be applied to a database handle. In this case, the
result of the function is the handle to the next database directory entry.

Parameters db A handle to a database.

Parameters prevRec A handle to a database record.

Warning: The handle returned by this function is intended for temporary database
indentification only; it persists for the lifetime of the database on the particular system. Do not
store record or database handles in the permanent data because the data cannot be
meaingfully copied to another system.

Functions

Operating System API Reference Guide 63

DbPointTable

Retrieves a pointer to the handle mapping table.

const void * const * DbPointTable()

Returns Pointer to the handle mapping table.

Description Each record handle can be used as an index into this table to obtain a direct pointer to
the contents of the record.

For a database handle, the associated pointer references the directory entry. Using
directory entry data directly is not advised since its format can change in future
versions of the software.

The location of this table does not change until the file system software is reloaded.

DbPointTableEdition

Retrieves the edition counter value.

DWORD DbPointTableEdition()

Returns The current value of the edition counter.

Description The DbPointTableEdition function is for use with the PointerTable; refer to the
Developer Guide for details on how to use this function.

DbRecSize

Retrieves the size of a database record.

int DbRecSize(
HandleType rec,
BOOL dataOnly)

Returns A non-negative record size, in bytes, or the following negative error code:

B_ERR_BAD_HANDLE

Description This function is fast enough that generally you do not need to keep track of the length
of each record.

Warning: The contents of this table are not guarenteed to persist unchanged across any
operation which might result in a change to the file system’s permanent data or its
organization, such as cleanup of dirty sectors, file system calls, and yielding the thread to other
applications. Use any stored values from this table carefully.

Parameters rec The handle to the record for which the size is requested.

dataOnly If true, report only the size of the user data in the record. If false, the
file system overhead is also included.

Chapter 3: File System API

64 BlackBerry Software Development Kit

DbReplaceOrphan

Replaces a database record with an orphan record.

STATUS DbReplaceOrphan(
HandleType rec,
HandleType orphan)

Returns One of the following return codes is returned:

DB_OK
DB_ERR_NO_SPACE
DB_ERR_BAD_HANDLE
DB_ERR_IS_DIR
DB_ERR_NOT_ORPHAN

Description This function is atomic. The record is either replaced or the database is unchanged.
No intermediate state is visible. Data consistency is preserved if a system error occurs
when the function is executing.

This function replaces a record in a database with an existing orphan record. It is very
efficient because it does not extend the log and does not cause a cleanup.

You cannot use this function to replace database directory entries. For security
reasons, these entries should only be modified by the file system.

DbReplaceRec

Replaces database record with a new one.

STATUS DbReplaceRec(
HandleType rec,
unsigned newSize,
const void * data)

Parameters rec The handle to the record to be replaced.

orphan The handle to the orphan record to replace rec.

Parameters rec The handle to the record to be replaced.

newSize The size of the new data, in bytes. The value must be between 0 and
216-2, inclusive. At any particular instant, the maximum possible
record size is additionally limited due to flash memory
fragmentation. Refer to "DbMaxNewRecSize" on page 61 for more
information.

data A pointer to the data to be written into the record. If it is NULL, the
data is assumed to have all bits set to one. This can be used with the
DbAndRec function.

Functions

Operating System API Reference Guide 65

Returns One of the following return codes:

DB_OK
DB_ERR_BAD_SIZE
DB_ERR_NO_SPACE
DB_ERR_BAD_HANDLE
DB_ERR_IS_DIR

Description This function is atomic. The record is either completely replaced or it remains
unchanged. No intermediate state is visible. Data consistency is preserved if a system
error occurs when the function is executing.

You can also call DbAndRec instead of DbReplaceRec. DbAndRec is faster, but it is not
atomic.

You cannot use this function on database directory entries. For security reasons, these
entries should only be modified by the file system.

The data parameter can be a pointer to some other portion of the file system.
However, the result is about 7% slower than if the data resides in RAM because flash
to flash copying must be buffered through RAM.

DbSecure

Overwrites deleted data with zeroes.

void DbSecure()

Description DbSecure overwrites all dirty records with zeroes to ensure that sensitive data is not
left in the file system.

DbSize

Retrieves database size.

int DbSize(
HandleType db,
BOOL dataOnly)

Returns A non-negative database size, in bytes, or one of the following negative error codes:

DB_ERR_BAD_HANDLE
DB_ERR_NOT_DIR

The following sample code demonstrates the use of this function:

// Create indices for sorting databases by size

Parameters db A database handle.

dataOnly If true, report only the size of the user data in the database. If false the
file system overhead is included.

Chapter 3: File System API

66 BlackBerry Software Development Kit

HandleType handles[MAX_NUM_DB];
int sizes[MAX_NUM_DB];
int i = 0;
HandleType CurrDb = DbFindNext (-1, NULL);
while (CurrDb >= 0) {

int Temp = DbSize (CurrDb, TRUE);
assert (Temp >= 0);
handles[i] = CurrDb;
sizes[i] = Temp;
i++;
CurrDb = DbFindNext (currDb, NULL);

}

Return codes

Operating System API Reference Guide 67

Return codes
Database/file system functions return the following return codes, shown here in
alphabetical order:

Return code Description

DB_ERR_BAD_FILE The file parameter is an invalid file number.

DB_ERR_BAD_HANDLE The db, rec, prevRec or orphan parameter is not a valid
handle.

DB_ERR_BAD_NAME An invalid database name was entered.

DB_ERR_BAD_SIZE The specified record size is invalid; it must be between 1 and 216

–2, inclusive.

DB_ERR_BOUNDS The region to be modified does not fit within the existing
record.

DB_ERR_FILE_CLOSED The specified file is not open.

DB_ERR_FILE_OPEN The streamed file access is currently open on the specified
database. It must be closed before deleting the database.

DB_ERR_IS_DIR The rec parameter refers to a directory entry.

DB_ERR_NO_FILE No handle is available.

DB_ERR_NO_HANDLE No handle is available.

DB_ERR_NO_SPACE There is not enough flash memory to perform the requested
action.

DB_ERR_NOT_DIR The db parameter is not a valid database directory entry.

DB_ERR_NOT_EXIST The named database does not exist.

DB_ERR_NOT_ORPHAN The specified record is not an orphan record.

DB_ERR_PRIV_HANDLE The specified handle is privileged.

DB_ERR_WRONG_DB The database did not match the record.

DB_NO_DB No databases with matching names exist after the specified
database.

DB_NO_REC The database has no records. (This is not an error.)

DB_OK The action was completed successfully.

Chapter 3: File System API

68 BlackBerry Software Development Kit

Chapter 4
Serial
communications API

The Serial Communications API, declared in comm.h, provides access
to the serial port.

Serial communications functions
The functions on the following pages are listed in alphabetical order.

CommClosePort ... 70
CommGetDtr .. 70
CommOpenPort ... 70
CommReadBuffer ... 71
CommReadChar ... 71
CommRegisterNotifyPattern .. 72
CommSendBuffer ... 73
CommSendChar ... 73
CommSetDsr ... 73
CommSetFlowControl ... 74
CommSettings ... 74
CommStandbyMode .. 74
CommTxCount ... 75

Chapter 4: Serial communications API

70 BlackBerry Software Development Kit

CommClosePort

Closes the COM port, disables line drivers, and frees any buffer memory that was
allocated when the COM port was opened.

void CommClosePort()

Description This function closes the COM port, disables the line drivers, and frees any buffer
memory that was allocated when the COM port was opened. When the handheld is
shut off, the system calls CommClosePort automatically. Applications must not assume
that the COM port is still open once the handheld is powered on again.

For example, see comtest.c.

CommGetDtr

Reads state of host DTR modem control line.

int CommGetDtr()

Returns The current state of the DTR control line.

Description The DTR line is actually the DTR control line as driven by an attached PC.

CommOpenPort

Allocates serial and transmit first-in, first-out (FIFO) buffers in memory, enables the
serial driver and hardware serial line drivers.

int CommOpenPort(
DWORD baud,
int databits,
int parity,
int Stopbits,
int RxBufferSize,
int TxBufferSize)

Parameters baud The baud rate that the serial port is to use.

databits The number of bits to use (7 or 8).

parity The parity method to use (one of: COMM_NO_PARITY,
COMM_EVEN_PARITY, or COMM_ODD_PARITY).

Stopbits The number of stop bits to use (1 or 2).

RxBufferSize The receive FIFO serial buffer size. It must be a power of two.
Values that are not a power of two are rounded up to a power
of two.

TxBufferSize The transmit FIFO serial buffer size. Values are rounded up to
a power of two.

Serial communications functions

Operating System API Reference Guide 71

Returns True if successful; false otherwise.

Description This function allocates serial and transmit FIFO buffers in memory, and enables the
serial driver, as well as hardware serial line drivers. It is advisable to always close the
COM port when it is not in use, as the hardware line drivers consume extra power
while the port is open.

Example See comtest.c.

CommReadBuffer

Read data received over the serial port.

int CommReadBuffer(
BYTE * Data,
int Length)

Returns The number of bytes actually read, or 0 (zero) if data is NULL.

Description The number of bytes read is the number of bytes in the serial receive FIFO when the
function is called. CommReadBuffer only returns the bytes received when
CommReadBuffer was called, and does not wait for extra bytes to arrive. If
CommReadBuffer returns less than what was passed in as Length, the serial receive
buffer is guaranteed to be empty after the call. Emptying the buffer ensures that a new
COMM_RX_AVAILABLE message is generated once new bytes arrive.

If data is NULL, CommReadBuffer flushes the receive buffer to empty.

CommReadChar

Read one byte from the serial port.

int CommReadChar()

Returns The byte read, or negative if an error occurred or no bytes were available.

Description This function is identical to calling CommReadBuffer with a length of one.

For example, see comtest.c.

Parameters Data A pointer to a buffer for holding the received data. Set this to NULL if
the data is to be discarded. This can be used to flush the receive buffer.

Length The maximum number of bytes to remove from the receive buffer.

Chapter 4: Serial communications API

72 BlackBerry Software Development Kit

CommRegisterNotifyPattern

Allows multiple applications to register a pattern to look for on the serial port.

DWORD __cdecl CommRegisterNotifyPattern(void * NotifyPattern)

Returns One of the following return codes:

Description This function allows multiple applications to register a pattern to look for on the serial
port. While DTR is active, the port is monitored at 9600 baud 8N1. If the specified
pattern occurs, the application that registered that pattern is sent a
COMM_PATTERN_NOTIFY event.

Applications can de-register patterns by calling CommRegisterNotifyPattern with a
NULL parameter. Applications can only register one pattern at a time. Registering a
second pattern cancels the first.

The following examples demonstrates the use of this function:

� CommRegisterNotifyPattern("abcd")

This causes a CommRegisterNotifyPattern message to be sent to the calling task
when the pattern abcd is seen on the port.

� CommRegisterNotifyPattern("a")

This call is not legal, as the Pattern parameter points only to an �a� followed by
zero followed by two unknown characters.

See also comtest.c.

Parameters NotifyPattern This parameter points to a 4-byte string containing a pattern.
The pattern�s first byte must be non-zero, and is always 4 bytes
in length.

0 COMM_NOTIFY_REGISTERED_NEW

1 COMM_NOTIFY_ALREADY_REGISTERED_BY_SELF

2 COMM_NOTIFY_ALREADY_REGISTERED_BY_OTHER

3 COMM_NOTIFY_REPLACED_OLDEST

4 COMM_NOTIFY_DEREGISTERED_SINGLE

 5 COMM_NOTIFY_DEREGISTERED_ALL

 6 COMM_NOTIFY_NOT_REGISTERED

7 COMM_NOTIFY_NOT_REGISTRATION_OWNER

Serial communications functions

Operating System API Reference Guide 73

CommSendBuffer

Places the bytes to be sent into the transmit serial FIFO.

int CommSendBuffer(
const void * Data,
int Length)

Returns The number of bytes that could be placed in the transmit FIFO, or negative if an error
occurred. CommSendBuffer places the data in the transmit FIFO and start transmitting,
but returns before the data has left the port.

Description This function places the bytes to be sent into the transmit serial FIFO. The function
returns immediately, and indicates how many bytes were actually placed in the
buffer. If an item larger than the serial buffer is to be sent, it must be split into several
chunks, while waiting for the COMM_TRANSMIT_EMPTY message in between.

For example, see comtest.c.

CommSendChar

Returns the number of bytes that could be placed in the transmit FIFO.

int CommSendChar(BYTE Character)

Returns The number of bytes that could be placed in the transmit FIFO. It returns negative if
an error occurred.

Description This function is identical to calling CommSendBuffer with only one byte.

CommSetDsr

Set DSR modem control line.

void CommSetDsr(int State)

Description The DSR signal is presented as DSR to an attached PC.

Parameters Data A pointer to the data to be sent.

Length The number of bytes to be sent.

Parameters Character The single character to be sent.

Parameters State The desire state for the DSR signal (0 or 1).

Chapter 4: Serial communications API

74 BlackBerry Software Development Kit

CommSetFlowControl

Sets the type of flow control to use for serial communications.

void CommSetFlowControl(enum FlowControlType flow)

CommSettings

Change the configuration of the serial port.

void CommSettings(
DWORD Baud,
int Databits,
int Parity,
int Stopbits)

Description This function is used to change the configuration of the serial port.

For example, see comtest.c.

CommStandbyMode

Puts the COM port into standby mode.

void CommStandbyMode(BOOL State)

Description This function keeps the COM port open, but allows the serial drivers and processor to
go into suspend mode. The caller must already have the COM port open, and must
remember to call CommStandbyMode (FALSE) before using the COM port again.

Parameters flow One of the following values:
SERIAL_NO_FLOW_CONTROL
SERIAL_SOFTWARE_FLOW_CONTROL
SERIAL_RTS_CTS_FLOW_CONTROL

Parameters Baud The baud rate that the serial port is to use.

Databits The number of bits to use (7 or 8).

Parity The parity method to use (one of COMM_NO_PARITY,
COMM_EVEN_PARITY, COMM_ODD_PARITY)

Stopbits The number of stop bits to use (1 or 2).

Parameters State Calling with true puts the COM port into standby mode; calling with
false disables standby mode.

Constants

Operating System API Reference Guide 75

CommTxCount

Returns the number of characters remaining to be transmitted in the serial transmit
FIFO.

int CommTxCount()

Returns The number of characters in the transmit buffer.

Description The number of characters remaining to be transmitted in the serial transmit FIFO; 0
(zero) if the transmit FIFO and hardware are completely empty.

Constants
The following constants are specific to the serial communications API.

These constants are used by CommOpenPort and CommSettings.

Error Codes

Constant Description

COMM_NO_PARITY Bytes are to be framed without a parity bit.

COMM_EVEN_PARITY Bytes are to be framed with even bit parity.

COMM_ODD_PARITY Bytes are to be frames with odd bit parity.

Error code Description

COMM_ERROR_NOT_OPEN This value is returned on COM function calls when the port is
not open.

COMM_ERROR_PARITY Indicates that a receive error has occurred.

COMM_ERROR_FRAMING Indicates that a frame error has occurred.

COMM_ERROR_OVERRUN Indicates the COM buffer had a buffer overrun.

COMM_ERROR_BREAK Indicates a COM break was received.

Chapter 4: Serial communications API

76 BlackBerry Software Development Kit

Events
The following device events are described in �COM device events� on page 119:

COMM_CONTROL_CHANGE
COMM_PATTERN_NOTIFY
COMM_RX_ERROR
COMM_RX_AVAILABLE
COMM_TX_EMPTY

Chapter 5
Keypad API

The Keypad API functions, declared in KeyPad.h, provide control of
the handheld keyboard.

Functions
The functions on the following pages are listed in alphabetical order.

Keypad::KeypadBeep .. 77
Keypad::KeypadRate ... 77
Keypad::KeypadRegister .. 78

Keypad::KeypadBeep

Turns key tones on or off when a key is pressed.

void KeypadBeep(BOOL Enable)

Keypad::KeypadRate

Configures the keypad for auto key repeat.

void KeypadRate(WORD Delay, WORD Rate)

Parameters Enable If Enable is true, a tone is generated when a key is
pressed; otherwise, the key tone is disabled.

Parameters Delay The delay, in milliseconds, after a key is held down
before it begins to repeat.

Rate The rate, in milliseconds, at which KEY_REPEAT
messages are sent to an application; a value of 0
disables the auto repeat key feature.

Chapter 5: Keypad API

78 BlackBerry Software Development Kit

Description This function configures the keypad for auto key repeat. The Delay, in milliseconds, is
the initial delay before the first KEY_REPEAT event is sent while the key is held down.

The Rate, also in milliseconds, is the rate at which KEY_REPEAT events are sent to an
application after the initial delay. The auto repeat feature is disabled if Rate is 0. By
default, the auto repeat key feature is enabled.

Keypad::KeypadRegister

Enables an application to register to receive events when hot keys are pressed.

BOOL KeypadRegister(DWORD Key)

Returns True if successful; false if there was insufficient space in the key registry to register
this request.

Description This function allows a system services application to intercept global hot keys. These
hot keys are sent only to the registered handler, and not to the foreground
application. For example, an application that provides an improved Task Switcher
and power-off facility could intercept the SHIFT + CLICK or ALT + ENTER
combinations with the following code:

KeypadRegister((SHIFT_STATUS << 16) | THUMB_CLICK);
KeypadRegister((ALT_STATUS << 16) | KEY_ENTER);

When the user invokes either of these two events, the keypad message is sent to this
application, regardless of which application was in the foreground. For the
application that intercepts the hot key to interact with the user, it must call
RimRequestForeground to bring itself to the foreground.

Parameters Key The keystroke which the application desires to intercept on a global
basis. A valid value consists of a key identification plus an optional
modifier. The key identification can be any capital letter,
KEY_BACKSPACE, KEY_SPACE, KEY_ENTER, or THUMB_CLICK. The modifier
can be either (SHIFT_STATUS << 16) or (ALT_STATUS << 16).

Constants

Operating System API Reference Guide 79

Constants

The following constants define some ASCII and some device-specific key codes.

Events
The following device events are described in�KEYPAD device events� on page 115:

KEY_DOWN
KEY_REPEAT
KEY_UP
THUMB_CLICK
THUMB_UNCLICK
THUMB_ROLL_UP
THUMB_ROLL_DOWN
KEY_STATUS

Constant Meaning

ALT_LOCK For all keypad events, if (Data[0] and ALT_LOCK) is true, then the
ALT LOCK key was on during the event.

ALT_STATUS For all keypad events, if (Data[0] and ALT_STATUS) is true, then the
ALT key was pressed during the event.

CAPS_LOCK For all keypad events, if (Data[0] and CAPS_LOCK) is true, then the
CAPS LOCK key was on during the event.

KEY_HELD_
WHILE_ROLLING

For THUMB_ROLL_UP/DOWN events, if (Data[0] and
KEY_HELD_WHILE_ROLLING) is true, then the last key combination
pressed is being held while the thumb wheel is being rolled.

SHIFT_STATUS For all keypad events, if (Data[0] and SHIFT_STATUS) is true, then
the SHIFT key was pressed during the event.

Constant Meaning

KEY_ALT This defines the scan code of the handheld ALT key.

KEY_BACKSPACE Standard ASCII backspace: 0x08.

KEY_DELETE Standard ASCII delete: 0x7F.

KEY_ENTER Standard ASCII enter: 0x0D

KEY_SHIFT This defines the scan code of the handheld SHIFT key.

KEY_SPACE Standard ASCII space: 0x20.

Chapter 5: Keypad API

80 BlackBerry Software Development Kit

Chapter 6
LCD API

LCD functions, declared in LCD_API.h, provide control of the
handheld LCD display.

Structures

LcdConfig

typedef struct {
WORD LcdType;
WORD contrastRange;
WORD width;
WORD height;

} LcdConfig;

Field Description

LcdType Reserved.

contrastRange Maximum contrast value for LcdGetContrast and LcdSetContrast.

width Width of the LCD in pixels.

height Height of the LCD in pixels.

Chapter 6: LCD API

82 BlackBerry Software Development Kit

LCD functions
The functions in the following pages are listed in alphabetical order.

LcdClearDisplay ... 82
LcdClearToEndOfLine .. 83
LcdCopyBitmapToDisplay ... 83
LcdCopyDisplay ... 84
LcdCreateDisplayContext ... 84
LcdDestroyDisplayContext .. 85
LcdDrawBox ... 85
LcdDrawLine .. 86
LcdForceRefresh ... 87
LcdGetCharacterWidth ... 87
LcdGetConfig .. 88
LcdGetContrast .. 88
LcdGetCurrentFont .. 88
LcdGetCursorPoint .. 88
LcdGetDisplayContext .. 89
LcdGetFontHeight ... 89
LcdGetFontName ... 91
LcdGetNumberOfFonts ... 91
LcdGetPixel ... 92
LcdGetRegion ... 92
LcdGetStringWidth .. 93
LcdIconsEnable ... 93
LcdPutStringXY .. 94
LcdRasterOp ... 96
LcdReplaceFont .. 99
LcdScroll .. 99
LcdSetContrast ... 100
LcdSetCurrentFont ... 100
LcdSetCursorPoint ... 101
LcdSetDisplayContext ... 101
LcdSetPixel .. 102
LcdSetRegion .. 102
LcdSetTextWindow ... 103

LcdClearDisplay

Clears the display by turning all pixels off.

void LcdClearDisplay()

Description This function clears the display by turning all pixels off, then places the cursor at the
top left-hand corner of the display. If a text window is defined, only the text window
is cleared.

LCD functions

Operating System API Reference Guide 83

LcdClearToEndOfLine

Turns off all pixels to the right of the current cursor position.

void LcdClearToEndOfLine()

Description This function turns off all pixels to the right of the current cursor position, beginning
at the current row of pixels and extending downward the current font height. (The
current font height can be determined with the LcdGetCurrentFontHeight function,
but this is not necessary when using LcdClearToEndOfLine.)

For example, see comtest.c and regress.c.

The following sample code demonstrates how to use this function:

// Display a line of text, move the cursor back, then turn off all pixels
to the end of the line
LcdCenterString("MESSAGE SENT");
for (x=1;x<=5;x++)

moveCursor(LEFT);
LcdClearToEndOfLine();

Result of LcdClearToEndOfLine sample code

LcdCopyBitmapToDisplay

Copies the entire bitmap defined in the structure pointed to by pbmSource to the
display.

void LcdCopyBitmapToDisplay(
const BitMap * pbmSource,
int iDisplayX,
int iDisplayY)

Description This function copies the entire bitmap defined in the structure pointed to by
pbmSource to the display. An offset in the display can be specified using iDisplayX
and iDisplayY.

The following sample code demonstrates how to use this function:

// Displays a clock bitmap to the screen at coordinate x =5, y =15.

Parameters pbmSource A pointer to a bitmap which is to be copied to the current virtual
display.

iDisplayX The horizontal location of the upper left corner to which the
bitmap will be copied.

iDisplayY The vertical location of the upper left corner to which the bitmap
will be copied.

Chapter 6: LCD API

84 BlackBerry Software Development Kit

LcdCopyBitmapToDisplay(&Clock, 5, 15);

See also clock.c.

LcdCopyDisplay

Copies the display buffer of an existing display context to another existing display.

int LcdCopyDisplay(
int iSourceDC,
int iDestDC)

Returns LCD_OK if successful and LCD_BAD_HANDLE if display context is invalid.

Description This function copies only the display buffer. No font attributes are copied.

The following sample code demonstrates how to use this function:

// Copy the display buffer of display #2 to display #3.
LcdCopyDisplay (2, 3);

LcdCreateDisplayContext

Creates a new display context, then copies the contents of an existing display context
into it.

int LcdCreateDisplayContext(int iDisplayToCopy)

Returns The number assigned to the new display context.

Description This function creates a new display context, then copies the contents of an existing
display context into it. A display context is a buffer which holds display information;
only one display can be active at a time. This is useful for preserving the display when
task-swapping.

The following sample code demonstrates how to use this function:

// Copy the contents of the current display context into a new display
// context, then clear the current display context.
// Write some text on the screen, then bring up the previous display.

LcdCenterString("Original application", 10);
current = LcdGetDisplayContext();
new = LcdCreateDisplayContext(current);

// Note that display context #current is still active

Parameters iSourceDC The number of the source display context.

iDestDC The number of the destination display context.

Parameters iDisplayToCopy The number of the existing display context that is to be copied
into the new display context. Using a value of -1, the display
context uses the system defaults.

LCD functions

Operating System API Reference Guide 85

LcdClearDisplay();
LcdCenterString("We replaced the text", 10);

// Now we switch to the copy of the original display, which remained intact
LcdSetDisplayContext(new);

LcdDestroyDisplayContext

Removes a display context from memory.

int LcdDestroyDisplayContext(int iDC)

Returns LCD_OK if the display context was succesfully destroyed; LCD_BAD_HANDLE if an invalid
display context is chosen.

Description A display context is a buffer that holds display information; only one display can be
active at a time. This is useful for preserving the display when task-swapping.

The following sample code demonstrates how to use this function:

// Remove display context #3 from memory.
LcdDestroyDisplayContext(3);

LcdDrawBox

Draws a hollow box on the display.

void LcdDrawBox(
int iDrawingMode,
int x1,
int y1,
int x2,
int y2)

Description This function draws a hollow box on the display, two diagonally opposite corners of
which are (x1, y1) and (x2, y2). If iDrawingMode = DRAW_WHITE, the pixels are turned
off. If iDrawingMode = DRAW_BLACK, the pixels are turned on. If iDrawingMode =
DRAW_INVERT, off pixels are turned on and on pixels are turned off.

Parameters iDC The number of the display context.

Parameters iDrawingMode Acceptable values are DRAW_WHITE, DRAW_INVERT, DRAW_BLACK.

x1 The horizontal pixel of the top left corner of the box.

y1 The vertical pixel of the top left corner of the box.

x2 The horizontal pixel of the bottom right corner of the box.

y2 The vertical pixel of the bottom right corner of the box.

Chapter 6: LCD API

86 BlackBerry Software Development Kit

See clock.c.

The following sample code demonstrates how to use this function:

// Draw two boxes
LcdDrawBox(DRAW_BLACK, 5, 10, 50, 50);
LcdDrawBox(DRAW_INVERT, 10, 5, 70, 35);

Result of LcdDrawBox sample code

LcdDrawLine

Draws a line on the display.

void LcdDrawLine(
int iDrawingMode,
int x1,
int y1,
int x2,
int y2)

Description This function draws a line on the display, the two ends of which are (x1, y1) and (x2,
y2). If iDrawingMode = DRAW_WHITE, the pixels are turned off. If iDrawingMode =
DRAW_WHITE, the pixels are turned on. If iDrawingMode = DRAW_INVERT, off pixels are
turned on and on pixels are turned off.

The following sample code demonstrates how to use this function:

// Draw a series of lines
for(x=2; x<=65; x+=4)

LcdDrawLine(DRAW_BLACK, x, 64, x*2, 0);

Parameters iDrawingMode Acceptable values are DRAW_WHITE, DRAW_INVERT, DRAW_BLACK.

x1 The horizontal pixel of the line�s starting point.

y1 The vertical pixel of the line�s starting point.

x2 The horizontal pixel of the line�s ending point.

y2 The vertical pixel of the line�s ending point.

LCD functions

Operating System API Reference Guide 87

Result of LcdDrawLine sample code

See also bouncer.c.

LcdForceRefresh

Copies the application�s virtual buffer to the display.

void LcdForceRefresh()

Description This function copies the application�s virtual buffer to the display. In order to speed
up the display rendering, all of an application�s LCD functions render into the
application�s private virtual display buffer. No screen updates are visible until the
application calls LcdForceRefresh or yields control (for example, by calling
RimGetMessage).

The following sample code demonstrates how to use this function:

LcdPuts("BOOM!");
LcdForceRefresh();
// this copies the virtual buffer to the display
DoLengthyOperation();
LcdClearDisplay();

During the lengthy operation, the screen shows this:

Result of LcdForceRefresh sample code

LcdGetCharacterWidth

Gets width of LCD display character for a particular font, in pixels.

int LcdGetCharacterWidth(
char c,
int iFontIndex)

Parameters c The character for which width is required.

iFontIndex The index number of the font in which the character would be
drawn. Valid numbers are from 0 to 4. As a special case, specifying
the fontIndex as �1 uses the currently selected font.

Chapter 6: LCD API

88 BlackBerry Software Development Kit

Returns Width (in pixels) of the specified character, if it was drawn in the specified font, or
LCD_BAD_FONT_INDEX if the font index specified was invalid.

Description The return value is the horizontal width (number of pixels) of the specified character
drawn in the specified font.

The following sample code demonstrates how to use this function:

// Get width (in pixels) of characters in current font.
int size
size = LcdGetCurrentFontWidth();

LcdGetConfig

Determines properties of the handheld LCD.

void LcdGetConfig(LcdConfig * config)

Description Use this function to determine the height, width, and contrast of the LCD.

For example, see HELLO.C.

LcdGetContrast

Determines the current contrast setting of the LCD.

int LcdGetContrast()

Returns The current contrast setting of the LCD. This value is a number from 0 (lightest) to the
maximum contrast (darkest) setting supported which is LCD_MAX_CONTRAST.

Description This function determines the current contrast setting of the LCD. The contrast can be
changed using the LcdSetContrast function.

LcdGetCurrentFont

Returns the font index that was last selected by LcdSetCurrentFont for the current
display context.

int LcdGetCurrentFont()

Returns The index number of fonts that are used for future text display. Valid index numbers
range from 0 to 4.

For example, see bouncer.c.

LcdGetCursorPoint

Determines the current pixel position of the cursor.

Parameters config A pointer to an LcdConfig structure that receives the LCD
configuration information.

LCD functions

Operating System API Reference Guide 89

void LcdGetCursorPoint(
int *xPixel,
int *yPixel)

Description This function determines the current pixel position of the cursor, and places the
horizontal position (from left) in xPixel and the vertical position (from top) in yPixel.

The following sample code demonstrates how to use this function:

// Move cursor 10 pixels to the left and 20 pixels down.
int cursorX, cursorY;
LcdGetCursorPoint(&cursorX, &cursorY);
LcdSetCursorPoint(cursorX - 10, cursorY + 20);

LcdGetDisplayContext

Retrieves the handle of the display context that is currently activated by the task.

int LcdGetDisplayContext()

Returns The handle of the current display context. If there is an error, the function returns
LCD_BAD_HANDLE.

Description A display context is a buffer which holds display information; only one display can be
active at a time. This is useful for preserving the display when task-swapping.

The following sample code demonstrates how to use this function:

// Store the handle of the current display context.
int CurrentDC;
CurrentDC = LcdGetDisplayContext();

See also bouncer.c and clock.c.

LcdGetFontHeight

Retrieves the vertical height of each character of specified font.

int LcdGetFontHeight(int iFontIndex)

Returns The height (in pixels) of the characters in the specified font or LCD_BAD_FONT_INDEX if
the font index specified was invalid.

Example // Get height (in pixels) of characters in current font.

Parameters xPixel The current horizontal pixel position of the cursor (0=left).

yPixel The current vertical pixel position of the cursor (0=top).

Parameters iFontIndex The index number of the font for which height is required. Valid
index numbers range from 0 to 4. As a special case, specifying the
ifontIndex as �1 gets the height of the currently selected font.

Chapter 6: LCD API

90 BlackBerry Software Development Kit

int size;
size = LcdGetFontHeight(FONT_BOLD);

See also hello.c, realtime.c, and regmess.c.

LCD functions

Operating System API Reference Guide 91

LcdGetFontName

Retrieves the name of the specified font.

int LcdGetFontName(
int iFontIndex,
const char ** fontName)

Returns LCD_OK if fontIndex is within the range of currently available fonts (see
LcdGetNumberOfFonts), or LCD_BAD_FONT_INDEX if the index is out of range.

Description Fonts 2 through 4 are user-defined. They are initially set to Font8High. See
LcdReplaceFont() for information on how to replace fonts 2 through 4 with
user-defined fonts.

The following sample code demonstrates how to use this function:

// Get the name of the current font.
char *name;
if (LcdGetFontName(-1, &name) == LCD_OK) {

// use name
}

LcdGetNumberOfFonts

Retrieves the number of fonts available.

int LcdGetNumberOfFonts()

Returns The number of fonts available.

Description The valid range of font indices is 0 to LcdGetNumberOfFonts(). By default, there are
FONT_SET_MAX fonts installed (numbered 0 through FONT_SET_MAX-1). If resource fonts
were installed in a resource DLL, the number returned is FONT_SET_MAX plus the
number of fonts in the resource DLL.

The following sample code demonstrates how to use this function:

int numFonts;
//Obtain the total number of fonts installed
numFonts = LcdGetNumberOfFonts();

Parameters iFontIndex The index number of the font for which height is required. Valid
index numbers range from 0 to LcdGetNumberOfFonts(). As a
special case, specifying the fontIndex as �1 gets the height of the
currently selected font.

fontName A pointer to a string that indicates the font name after the function
is executed.

Chapter 6: LCD API

92 BlackBerry Software Development Kit

LcdGetPixel

Determines whether the specified pixel is on (black) or off (white).

BOOL LcdGetPixel(
int x,
int y)

Returns True if the LCD pixel at the specified (x, y) position is on and false if it is off.

Description This function provides a very low-level interface to the LCD display system.

LcdGetRegion

Copy contents of a region of the LCD into a user buffer.

void LcdGetRegion(
int left,
int top,
int width,
int height,
void * BitArray)

Description This function is the counterpart to LcdSetRegion.

Parameters x The horizontal pixel position (0=left).

y The vertical pixel position (0=top).

Parameters left The horizontal pixel location of the top left corner of the rectangular
area on the LCD.

top The vertical pixel location of the top left corner of the rectangular
area on the LCD.

width The pixel width of the rectangular area on the LCD.

height The pixel height of the rectangular area on the LCD.

BitArray A pointer to space for a sequence of bits, packed 8 to a byte to be read
from the rectangular area on the LCD. The least significant bit (LSB)
is first.

LCD functions

Operating System API Reference Guide 93

LcdGetStringWidth

Determines the number of horizontal pixels a string requires.

int LcdGetStringWidth(
const char * sz,
int iFontIndex,
int length)

Returns The horizontal width, in pixels, of the string pointed to by sz, or LCD_BAD_FONT_INDEX
if the font index specified is invalid.

Description This function is useful for determining the number of horizontal pixels a string would
require. The calculation is made using the width of each character based on the
specified font. The string itself is not displayed.

For example, see regmess.c.

LcdIconsEnable

Enables or disables the ALT or SHIFT key icon.

void LcdIconsEnable(BOOL Enable)

Description This function is used to enable or disable the ALT or SHIFT key icon that appears at
the top right corner of the screen when the ALT or SHIFT / SHIFT-LOCK functionality
on the keypad is used. When the icons are enabled, they overlay what is in the
foreground LCD context, without altering the contents of the application�s display
context. When ALT or SHIFT is cancelled, the area of the icon returns to what the
application has stored in the display context.

By default, the icons are enabled. Icons can be enabled and disabled on a per-context
basis.

For example, see bouncer.c.

Parameters sz A pointer to a string whose width in pixels is required.

iFontIndex The index number of the font in which the character would be
drawn. Valid numbers range from 0 to 4. As a special case,
specifying the ifontIndex as �1 uses the currently selected font.

length The number of characters in the string. A length of -1 uses all of the
characters up to, but not including, a NULL terminator byte.

Parameters Enable Set this parameter to true to enable the icons or false to disable the
icons.

Chapter 6: LCD API

94 BlackBerry Software Development Kit

LcdPutStringXY

Puts text on the LCD display.

int LcdPutStringXY(
int x,
int y,
const char * s,
int length,
int flags)

Parameters x The horizontal position in pixels from the left edge of the text window
(if one has been defined) or the left edge of the display. x = -1 is treated
specially as described below in length.

y The vertical position in pixels from the top edge of the text window (if
one has been defined) or the top edge of the display. y = -1 means to
use the current cursor�s y position instead.

s A pointer to a string that is to be displayed at the position specified by
the x and y parameters.

length The number of characters to be displayed. A length of -1 uses the
current length of the string. However, if an actual length is specified,
the string is not required to be NULL-terminated. If the actual string is
longer than the value specified, the extra characters are not displayed.
Fewer characters than specified might be displayed if, for example,
line wrapping is disabled but the string is too long to be displayed on
the current line.

flags Any of the following attributes, combined using the bitwise-OR
operator:

Attribute Description

TEXT_NORMAL This is the default text attribute.

TEXT_UNDERLINE Text is underlined.

TEXT_INVERT Text is highlighted.

TEXT_OVERSTRIKE Text is displayed without erasing what was already on the
display at that location.

TEXT_BLANK A display area of the correct height and width is erased, but
the text is not displayed. This is equivalent to displaying the
text in white on a white background.

LCD_RAW This attribute prevents recognizing return characters and
new lines as special characters.

LCD functions

Operating System API Reference Guide 95

Returns The actual number of characters processed. If there was not enough room to display
all of the characters, this might be less than the length parameter.

Description A call to this function changes the current cursor position, so that a subsequent call
with x = -1, y = -1 and flags = LCD_LEFT_JUSTIFIED continues writing immediately
after the string which was just displayed.

The following sample code demonstrates how to use this function.

LcdConfig lcdConf;
LcdGetConfig (&lcdConf);
LcdPutStringXY (-1, 0, "Underline", -1, TEXT_UNDERLINE | TEXT_CENTERED);
LcdPutStringXY(0, lcdConf.height/3,"Left-Justified", -1,

TEXT_NORMAL | LCD_LEFT_JUSTIFIED);
LcdPutStringXY(-1, LCDCONF.HEIGHT*2/3, "Inverted", -1, TEXT_INVERT |
TEXT_CENTERED);

LCD_LEFT_JUSTIFIED Text is displayed starting at (x,y). This is the default
behavior. If (x,y) is (-1,-1), the text starts at the current
cursor position as set by the previous call to
LcdPutStringXY.

LCD_RIGHT_JUSTIFIED Text is displayed so that it ends at (x,y).

LCD_CENTERED Text is displayed centered around (x,y). If x is –1, the text is
horizontally centered within the text window.

LCD_MULTLINE If this attribute is set and the string is too long to be
displayed on the current line, the remaining characters are
displayed on the next line. Otherwise, only those characters
which can fit on the current line is displayed.

LCD_WORD_WRAP This attribute prevents the display of partial words on a line.
If the text is going to be truncated or wrapped to the next
line, the wrap point will be on a word boundary. This cannot
be combined with lcd_right_justified or
lcd_centered.

LCD_ELLIPSIS If text had to be truncated because of insufficient space on
the line (if lcd_multiline is not used) or insufficient space
on the screen (if lcd_multiline is used), then this attribute
causes the last displayed character to be replaced by an
ellipsis character (…) – character 0x1F, char_ellipsis.

Attribute Description

Chapter 6: LCD API

96 BlackBerry Software Development Kit

Result of LcdPutStringXY sample code

See also hello.c, bouncer.c, comtest.c, and ping.c.

LcdRasterOp

Takes a source rectangular block out of a BitMap and applies a binary function wOp to
it and the destination rectangular block in another bitmap.

void LcdRasterOp(
DWORD wOp,
DWORD wWide,
DWORD wHigh,
const BitMap * src,
int SrcX,
int SrcY,
BitMap * dest,
int DestX,
int DestY)

Parameters wOp This parameter has one of 16 possible functions which can be applied
to each pixel. Refer to the following table for a description of the
corresponding Windows - BitBlt Raster Operation Codes.

wWide The width of the source and destination block. The source and
destination blocks are forced to be the same size accordingly.

wHigh The height of the source and destination block. The source and
destination blocks are forced to be the same size accordingly.

src A pointer to the source bitmap structure. If NULL, then the
application�s current virtual display is used as the bitmap.

SrcX The horizontal location of the upper left corner of the source block,
relative to the left edge of the display.

SrcY The vertical location of the upper left corner of the source block,
relative to the top of the display.

LCD functions

Operating System API Reference Guide 97

The following table lists the Windows BitBlt Raster Operation Codes.

dest A pointer to the destination bitmap structure. If NULL, then the
application�s current virtual display is used as the bitmap.

DestX The horizontal location of the upper left corner of the destination
block, relative to the left edge of the display.

DestY The vertical location of the upper left corner of the destination block,
relative to the top of the display.

Operation code Description

BLACK This operation fills the destination area, ignoring the source
bitmap. (BLACKNESS)

COPY_INVERT_SRC This operation inverts the source bitmap and then copies it to
the destination area. (NOTSRCCOPY)

COPY_SRC This operation copies the source bitmap to the destination
area. (SRCCOPY)

INVERT_DEST This operation inverts the destination area, ignoring the
source bitmap. (DSTINVERT)

INVERT_OF_SRC_AND_DEST This operation logically exclusive AND-s each pixel of the
inverted source bitmap with that of the destination bitmap
and then places the result in the destination area.

INVERT_OF_SRC_OR_DEST This operation inverts the source bitmap and logically OR-s
each pixel with that of the destination bitmap and then places
the result in the destination area.

INVERT_OF_SRC_XOR_DEST This operation logically exclusive OR-s each pixel of the
inverted source bitmap with that of the destination bitmap
and then places the result in the destination area.

INVERT_SRC_AND_DEST This operation inverts the source bitmap and logically AND-s
each pixel with that of the destination bitmap and then places
the result in the destination area.

INVERT_SRC_OR_DEST This operation logically exclusive OR-s each pixel of the
inverted source bitmap with that of the destination bitmap
and then places the result in the destination area.

NO_OP This operation has no effect on the destination area.

Chapter 6: LCD API

98 BlackBerry Software Development Kit

Description This is an implementation of the standard computer graphics rectangular bitmap
copy operation rasterop. It is also known as bitblt (BIT-wise BlockTransfer). This
function takes a source rectangular block out of a BitMap (see pager.h for the typedef
structure definition), and applies a binary function wOp to it and the destination
rectangular block in another BitMap. There are 16 possible wOp functions which can be
applied, as listed above.

LcdRasterOp does handle clipping properly: if you specify a source or destination
block which extends past the edge of the source bitmap�s boundaries, LcdRasterOp
truncates the block.

For example, see ping.c.

SRC_AND_DEST This operation logically AND-s each pixel of the source bitmap
with that of the destination bitmap and then places the result
in the destination area. (SRCAND)

SRC_AND_INVERT_DEST This operation logically AND-s each pixel of the source bitmap
with that of the inverted destination bitmap and then places
the result in the destination area.

SRC_OR_DEST This operation logically exclusive OR-s each pixel of the source
bitmap with that of the destination bitmap and then places
the result in the destination area.

SRC_OR_INVERT_DEST This operation logically exclusive OR-s each pixel of the source
bitmap with that of the inverted destination bitmap and then
places the result in the destination area. (MERGEPAINT)

SRC_XOR_DEST This operation logically exclusive OR-s each pixel of the source
bitmap with that of the destination bitmap and then places
the result in the destination area. (SRCINVERT)

WHITE This operation clears the destination area, ignoring the source
bitmap. (WHITENESS)

Operation code Description

LCD functions

Operating System API Reference Guide 99

LcdReplaceFont

Redefines a font, specified by iFontIndex, with a new font definition pointed to by
pNewFont.

int LcdReplaceFont(
int iFontIndex,
const FontDefinition * pNewFont)

Returns LCD_OK if successful; or LCD_BAD_FONT_INDEX if an invalid font number is specified.

Description Custom font definitions structures (in the form of C header files) are created by the
lcdfonts.exe utility and included in the application. The user should ignore the
details of the FONTDEFINITION structure and simply pass the FONT structure name as
pNewFont. Refer to the Developer Guide for more information on using the
lcdfonts.exe utility.

Specifying NULL as the font definition causes the system default font to be restored.
The following table lists system default fonts:

LcdScroll

Scrolls the region defined by the current text window up or down.

void LcdScroll(int pixels)

Description This function scrolls the region defined by the current text window up or down. If no
text window has been defined, it scrolls the entire display. If pixels is positive, the
region is scrolled up, and an area at the bottom is cleared. If pixels is negative, the
region is scrolled down, and an area at the top is cleared.

Parameters iFontIndex The index number of the font that is to be redefined. Valid
numbers range from 0 to 4.

pNewFont A pointer to a new font definition, or NULL.

Index Font

0 (FONT_8_PIXEL) An 8-pixel high font, allowing 8 lines of text on the display

1 (FONT_10_PIXEL) A 10-pixel high font, allowing 6 lines of text on the display

2 (FONT_USER) to 4
(FONT_SET_MAX-1)

These indexes are reserved for user fonts. The default is
the same as FONT_8_PIXEL.

Parameters pixels The number of pixels to scroll the current text window up (if positive)
or down (if negative).

Chapter 6: LCD API

100 BlackBerry Software Development Kit

For example, see comtest.c, hello.c, and ping.c.

LcdSetContrast

Sets a new contrast setting for the LCD.

void LcdSetContrast(int contrast)

For example, see bouncer.c.

LcdSetCurrentFont

Selects a new font as the current font.

int LcdSetCurrentFont(int iFontIndex)

Returns 0 (zero) if the font selection was successful; otherwise, it returns LCD_BAD_FONT_INDEX
if the font index number is invalid.

Description This function selects a new font as the current font. Subsequent text is displayed using
the new font.

The following sample code demonstrates how to use this function:

// Select font #2, which is known to be a valid font.
LcdSetCurrentFont(2);

// Select font #number
int number;
if (LcdSetCurrentFont(number) != 0) (

LcdClearDisplay();
LcdPutStringXY(-1, 0, "Font selection error", -1, LCD_CENTERED);

}
// Print text in a variety of fonts
for (x=0; x<=3; x++) {

LcdSetCurrentFont(x);
LcdPutStringXY(-1, x*8, "The quick brown fox", -1, LCD_CENTERED);

}

Parameters contrast The new contrast setting of the LCD; this value is a number from 0
(lightest) to the maximum contrast (darkest) setting support, which
is LCD_MAX_CONTRAST.

Parameters iFontIndex The index number of the font that will be used for future text
display; valid numbers range from 0 to 4.

LCD functions

Operating System API Reference Guide 101

Result of LcdSetCurrentFont sample code

LcdSetCursorPoint

Moves the cursor to a new pixel position defined by xPixel and yPixel.

void LcdSetCursorPoint(
int xPixel,
int yPixel)

Description This function moves the cursor to a new pixel position defined by xPixel (horizontal
from left to right) and yPixel (vertical from top to bottom). If a text window has been
defined, the cursor is positioned relative to the text window�s (not the display�s) top
left-hand corner.

The following sample code demonstrates how to use this function:

// Move the cursor to pixel row 2, pixel column 13, and display text.
int x, y;
LcdSetCursorPoint(13, 2);

LcdGetCursorPoint(&x, &y);
LcdPutStringXY(x, y, "Hello World", -1, TEXT_NORMAL);

Result of LcdSetCursorPoint sample code

See also regmess.c.

LcdSetDisplayContext

Activates the display context numbered iDC.

int LcdSetDisplayContext(int iDC)

Parameters xPixel The new horizontal cursor position (0=left).

yPixel The new vertical cursor position (0=top).

Chapter 6: LCD API

102 BlackBerry Software Development Kit

Returns LCD_OK if successful, or LCD_BAD_HANDLE if an invalid display context is chosen.

Description This function activates the display context numbered iDC. A display context is a
buffer which can be accessed just like the regular display, but remains invisible until it
is activated. This is useful for leaving the previous display on until the new display is
ready, as well as for task-swapping.

When the display context, SYSTEM_MODAL_DC, is selected the current screen image is
frozen and the program requesting the SYSTEM_MODAL_DC can draw on top of it. This
does not bring the calling application to the foreground. The current foreground
program continues to run, to receive keystroke messages, and to update its (now
hidden) display context. When the task which had selected SYSTEM_MODAL_DC selects a
different display context, the screen is refreshed from the foreground program�s
display context, and normal screen updates resume.

For example, see bouncer.c.

LcdSetPixel

Provides a very low-level interface to the LCD display system.

void LcdSetPixel(
int x,
int y,
BOOL value)

LcdSetRegion

Copies contents of a user buffer to a region of the LCD.

void LcdSetRegion(
int left,
int top,
int width,
int height,
void * BitArray)

Parameters iDC The number of the display context.

Parameters x The horizontal pixel position (0=left).

y The vertical pixel position (0=top).

value True to turn the LCD pixel at the specified (x, y) on and false to turn it
off.

LCD functions

Operating System API Reference Guide 103

Description This function is equivalent to the following example code:

for (x=left; x <left+width; x++){
for (y=top; y <top+height; y++) {
LcdSetPixel (x, y, next bit from BitArray);
}
// skip bits in BitArray if necessary to get to a byte boundary
}

LcdSetTextWindow

Defines the boundaries of the text window.

void LcdSetTextWindow(
int x,
int y,
int wide,
int high)

Description This function defines the boundaries of the text window. Subsequent text display will
be confined within this window. This function is useful for keeping certain
information in one place on the display, while placing new text in a different location.

The following sample code demonstrates how to use this function:

// Fill the screen with the letter "A", then define a text window, clear
// it, and write the text "295 Phillip" in the new text window.

Parameters left The horizontal pixel location of the top left-hand corner of the
rectangular area on the LCD.

top The vertical pixel location of the top left-hand corner of the
rectangular area on the LCD.

width The pixel width of the rectangular area on the LCD.

height The pixel height of the rectangular area on the LCD.

BitArray The sequence of bits, packed 8 to a byte, to be sent to the rectangular
area on the LCD. The least significant bit (LSB) is first.

Parameters x The horizontal pixel location of the top left corner of the new text
window.

y The vertical pixel location of the top left corner of the new text window.

wide The pixel width of the new text window.

high The pixel height of the new text window.

Chapter 6: LCD API

104 BlackBerry Software Development Kit

int charWidth,charHeight;
int fontIndex = LcdGetCurrentFont();
charWidth = LcdGetCharacterWidth('A', fontIndex);
charHeight = LcdGetFontHeight(fontIndex);
for (y=0; y<(65/charHeight); y++)

for (x=0; x<(132/charWidth); x++)
LcdPutStringXY(x*charWidth, y*charHeight, "A", 1, TEXT_NORMAL);

LcdSetTextWindow(20, 12, 80, 25);
LcdClearDisplay();
LcdPutStrinXY(0, 0, "295 Phillip", -1, TEXT_NORMAL);

Result of LcdSetCurentText sample

Constants
A large number of very specific constants are not reproduced here. For information
about RasterOperations and TextFormatting, please see LcdRasterOp and
LcdPutStringXY, respectively.

Note: The constants LCD_WIDTH, LCD_HEIGHT, LCD_HEIGHT_BYTE, LCD_DISPLAY_SIZE, and
LCD_DISPLAY_SIZE_BYTE are no longer available. The information they provided should be
obtained using the LcdGetConfig function.

Constant Description

LCD_MAXCONTRAST Maximum contrast index. The valid range of contrast settings is
[0, LCD_MAXCONTRAST].

DRAW_WHITE This drawing mode specifies that objects placed on the display
should be drawn by turning off pixels.

DRAW_INVERT This drawing mode specifies that objects placed on the display
should be drawn by turning on pixels that are off and turning off
pixels that are on.

DRAW_BLACK This drawing mode specifies that objects placed on the display
should be drawn by turning on pixels.

FONT_8_PIXEL This font index specifies the standard 8 pixel high font. In this font,
8 rows of characters are placed on the display.

Return codes

Operating System API Reference Guide 105

Return codes

FONT_10_PIXEL This font index specifies the standard 10 pixel high font. In this
font, 6 rows of characters are placed on the display.

FONT_USER This font index specifies the first user defined font.

FONT_SET_MAX This font index specifies one more than the maximum user font
index. The valid user font index range is font_user to
(font_set_max – 1).

FONT_REGULAR This font index refers to the regular system font. This is currently
an alias for font_8_pixel.

Constant Description

Return Code Description

LCD_OK Indicates that the operation was successful

LCD_BAD_HANDLE Returned when an invalid display context is specified

LCD_OUT_OF_MEMORY Returned if the operation failed due to a lack of system
resources

LCD_BAD_FONT_INDEX Returned if the specified font index is invalid

Chapter 6: LCD API

106 BlackBerry Software Development Kit

Chapter 7
Peripheral API

The RIM 857� and RIM 957� can host peripheral devices, such as
bar code readers and credit card swipers. Most peripherals attach to
and communicate via the serial port.

The Peripheral API provides access to signals and control lines
available on the RIM 857 and RIM 957 beyond the serial interface.

When the handheld detects a peripheral connection, it sends a
PERIPHERAL_ID_UPDATE event to applications. When the controlling
application receives this event, it should call PeripheralGetId() to
determine whether the event indicates a peripheral connection or a
peripheral disconnection (an ID of 4 indicates that a peripheral is
connected). The application can then call PeripheralRegister() to
obtain ownership of the peripheral port.

Functions
The following Peripheral API functions, declared in peripheral.h,
are listed alphabetically.

PeripheralGetId .. 108
PeripheralGetOwner .. 108
PeripheralPowerSupply .. 108
PeripheralRegister .. 108
PeripheralStatusControl .. 109
PeripheralUnregister ... 109

Chapter 7: Peripheral API

108 BlackBerry Software Development Kit

PeripheralGetId

Retrieves the current status of the PER_IDx pins.

int PeripheralGetId(void);

Returns Bit x of the return value corresponds to PER_IDx. For example, a return value of 4
means that (PER_ID2, PER_ID1, PER_ID0) equals (1, 0, 0) and indicates that a
peripheral is connected.

PeripheralGetOwner

Retrieves the ID of the task that currently has ownership of the peripheral port.

TASK PeripheralGetOwner(void)

Returns The ID of the task that currently has ownership of the peripheral port, or
TASK_NOT_FOUND if no task currently owns the port.

PeripheralPowerSupply

Retrieves, and optionally changes, the status of the power supply pin.

int PeripheralPowerSupply(int iMode)

Returns This function returns the current status of the peripheral power supply, or -1 if the
calling task does not currently have ownership of the peripheral port.

Description The current status of the power supply pin, and then sets it to the status specified by
iMode. If iMode is PER_POWER_QUERY, the function just returns the current status and
makes no change.

PeripheralRegister

Registers ownership of the peripheral port with current task.

BOOL PeripheralRegister()

Returns True if ownership of the peripheral port is assigned successfully to the calling task;
false otherwise.

Description This function gives the calling task ownership of the peripheral port if a peripheral is
attached, and no other task currently owns it. A task must have ownership of the
peripheral port to control the power supply and status/control pins.

Refer to "PeripheralUnregister" on page 109 for more information.

Parameters iMode Status of the power supply; one of the following values:
PER_POWER_ON
PER_POWER_OFF
PER_POWER_QUERY

Functions

Operating System API Reference Guide 109

PeripheralStatusControl

Retrieves, and optionally changes, the current status of the status/control data latch.

int PeripheralStatusControl(int iMode)

Returns The value in the status/control data latch (if iMode is set to PER_SC_QUERY_LATCH) or
returns the input state of the status/control pin and sets the latch to the state specified
in the iMode parameter.

The function returns -1 if the calling task does not currently have ownership of the
peripheral port.

PeripheralUnregister

Relinquishes ownership of the peripheral port by the calling task.

BOOL PeripheralUnregister()

Returns True if the calling task successfully relinquishes ownership of the peripheral port;
false if the task did not already have ownership of the port.

Description This function relinquishes ownership of the peripheral port.

Refer to "PeripheralRegister" on page 108 for more information.

Parameters iMode Status of the power supply; one of the following values:
PER_SC_QUERY_LATCH
PER_SC_QUERY_STATUS
PER_SC_LATCH_OFF
PER_SC_LATCH_ON

Chapter 7: Peripheral API

110 BlackBerry Software Development Kit

Chapter 8
Device events

This chapter lists the types of device events. When a device event
occurs, the MESSAGE.Device member is equal to one of these values:

� DEVICE_SYSTEM�system device events (refer to page 112)

� DEVICE_TIMER�timer device events (refer to page 114)

� DEVICE_RTS�real-time clock events (refer to page 114)

� DEVICE_HOLSTER�holster events (refer to page 115)

� DEVICE_KEYPAD�input events (refer to page 115)

� DEVICE_RADIO�radio events (refer to page 118)

� DEVICE_COM�serial port events (refer to page 119)

Chapter 8: Device events

112 BlackBerry Software Development Kit

SYSTEM device events
When the following events occur, the Device member of the MESSAGE structure will be
equal to DEVICE_SYSTEM.

Event Description

BATTERY_GOOD The internal battery is back to normal. Sent after recharging.

BATTERY_LOW When the internal battery voltage falls below a critical level, this
message is sent to all applications. The applications should then
save any necessary information to the flash file system. To start
recharging the battery, the user must plug in the external power
adapter or install new AA batteries.

BATTERY_UPDATE Application should call RimGetBatteryLevel() to get the
latest state.

MEMORY_LOW Sent when memory drops below a specific threshold; a request
to free up RAM.

PERIPHERAL_ID_UPDATE Application should call PeripheralGetId() to get the latest
ID.

POWER_OFF This event is sent to all applications to indicate that the user is
putting the device into a power off state. Although power is not
actually off, the applications do not receive any messages, the
LCD display is blank in power-save mode , and the radio is off. An
application will turn the power off by calling
RimRequestPowerOff.
The COM port, if open at power down, will be closed
automatically.

POWER_UP This event is sent to all applications to indicate that the device
has left the power off state. This may be caused by a key or
trackwheel event, a real-time clock alarm event, or a change of
state on the COM control lines indicating that a serial cable has
been plugged in.

Operating System API Reference Guide 113

SWITCH_BACKGROUND This event is sent to the current foreground application,
indicating that a background application has requested
foreground. It indicates that the foreground application has
been forced to the background. The SubMsg field contains the
task handle of the application that requested foreground.

SWITCH_FOREGROUND This event is sent to a background application to indicate that it
has received foreground.

TASK_LIST_CHANGED This message is sent to the foreground task when another task
has changed its task switcher information by a call to
RimSetPID.

Event Description

Chapter 8: Device events

114 BlackBerry Software Development Kit

TIMER device events
When the following events occur, the Device member of the MESSAGE structure will be
equal to DEVICE_TIMER.

The handheld contains a pool of 48 global timers, for which applications can register,
using the RimSetTimer function. These timers can be configured as either periodic or
one-time, with a minimum resolution of 10 milliseconds, and trigger and event when
the timer has expired.

To register a timer, pass a timer ID, the length of the timer (in 1/100 second
increments), and the type of the timer, either TIMER_PERIODIC, TIMER_ONE_SHOT,
TIMER_ABSOLUTE to the RimSetTimer function.

When a timer expires, a message from DEVICE_TIMER is sent to the application that
called RimSetTimer. The Event field of this message will contain the timer ID assigned
by the application when it called RimSetTimer.

In order to avoid overflowing the system with events, newer messages of periodic
timers will not be dispatched until the previous message is received by the
application. As such, there is potential for drift in periodic timers over time if the
system is very busy.

In order to prolong battery life, avoid using short periodic timers (less than 5 seconds)
for extended periods.

RTC (real-time clock) device events
When the following events occur, the Device member of the MESSAGE structure will be
equal to DEVICE_RTC.

Event Description

RTC_ALARM_EXPIRED The real-time clock device sends this event to indicate that the
alarm time has been reached. This event is sent only to the
application that has set the alarm clock to the current time.
Every application can set a different alarm time. Also see the
RimSetAlarmClock API call for information on setting the alarm
time.

RTC_CLOCK_UPDATE This event is sent to all applications whenever the date and time
is updated. This occurs every minute or when the date and time
has been programmed. Applications can then call
RimGetDateTime to get the current date and time.

Operating System API Reference Guide 115

HOLSTER device events
When the following events occur, the Device member of the MESSAGE structure will be
equal to DEVICE_HOLSTER.

KEYPAD device events
When the following events occur, the Device member of the MESSAGE structure will be
equal to DEVICE_KEYPAD.

The SubMsg field contains the ASCII code of the key that is pressed, including any
effects of the ALT or SHIFT keys. The status of the ALT, SHIFT, and CAPS LOCK keys
can be obtained from the Data[0] field as a combination of the ALT_STATUS,
SHIFT_STATUS and CAPS_LOCK constants. The Data[1] field indicates the time at which
the event happened as the number of 10 millisecond increments since the device was
turned on.

Event Description

IN_HOLSTER This event is sent to all applications whenever the device is put
into the holster.

OUT_OF_HOLSTER This event is sent to all applications whenever the device is
removed from the holster.
Note: See the function RimHolsterStatus for information on
how to get the current holster status. Neither of these messages
is sent to the applications if the device is in Power Off mode.

Event Description

THUMB_CLICK The trackwheel has been pressed down.

THUMB_UNCLICK The trackwheel has been released.

THUMB_ROLL_UP The trackwheel has been rotated up.

THUMB_ROLL_DOWN The trackwheel has been rotated down. The amount by which the
trackwheel has rotated since the last THUMB_ message was sent is
placed in the SubMsg field of the message.

Chapter 8: Device events

116 BlackBerry Software Development Kit

The following table shows the possible values in the SubMsg field for KEY_DOWN and
KEY_REPEAT events. For all key presses, the SubMsg field will contain the ASCII value
of the character shown.

KEY_DOWN The key has been pressed down.

KEY_REPEAT The key has been held down and is automatically repeating. The
key_repeat event is generated only when the API function
KeypadRate is used to enable repeating keys.

KEY_STATUS The ALT or SHIFT status has changed. The ALT and SHIFT keys are
not passed to an application in the normal way. Instead, they are
processed by the application server.

Key SHIFT + Key ALT + Key

a A * asterisk

b B ! exclamation mark

c C ; semicolon

d D + plus sign

e E 3

f F - minus, hyphen

g G = equal sign

h H : colon

I I 8

j J ‘ apostrophe

k K “ double quotation mark

l L @ at sign

m M . period

n N , comma

o O 9

Event Description

Operating System API Reference Guide 117

p P 0

q Q 1

r R 4

s S / forward slash

t T 5

u U 7

v V ? question mark

w W 2

x X $ dollar sign

y Y 6

z Z _ underscore

Space bar space bar space bar

ENTER ENTER ENTER

BACKSPACE SHIFT_BACKSPACE BACKSPACE

Key SHIFT + Key ALT + Key

Chapter 8: Device events

118 BlackBerry Software Development Kit

RADIO device events
When the following events occur, the Device member of the MESSAGE structure will be
equal to DEVICE_RADIO. The following descriptions are generic; descriptions specific to
your wireless network can be found in the RADIO device events section of the Radio
API Developer Guide.

Event Description

BASE_STATION_CHANGE This event is sent to all registered applications. It indicates that
the radio modem has changed base stations.

MESSAGE_NOT_SENT An attempt to transmit information to the network failed. This
event is sent to the task who submitted the packet whenever
coverage is too poor for transmission or an invalid data packet is
sent.

MESSAGE_RECEIVED This event is sent to all applications that have registered to
receive RADIO events (RadioRegister()).
This event indicates that a data packet was received.
Applications should call the appropriate RadioGet() function
to receive the message data.

MESSAGE_SENT This event is an acknowledgement that a transmitted packet
was received by the wireless network. This event is sent to the
application that sent the packet, whether that application is in
the foreground or the background. The SubMsg field contains
the tag value that was returned by the appropriate RadioSend
call.

MESSAGE_STATUS This event notifies the sender of the packet’s transmit status. A
data packet sent to the Radio API may not be transmitted
immediately, because the packets are queued in the Radio API
layer, and the radio code’s retry spacing. The Data[0] field of
the MESSAGE structure will contain the status subcodes.

NETWORK_STARTED This event, sent to all registered applications, indicates that the
radio modem has been turned on or has just switched to a new
network.

RADIO_TURNED_OFF This event is sent to all registered applications, indicating that
the radio modem has been turned off, either by the user or as a
result of a low battery.

SIGNAL_LEVEL This event is sent to all registered applications, and indicates
that the receive signal level has changed. The SubMsg field
contains a negative value, which represents the level of the
signal in dBm. A less negative value (closer to zero) indicates a
stronger signal. A value of –256 dBm (RSSI_NO_COVERAGE)
indicates that the modem is out of coverage.

Operating System API Reference Guide 119

COM device events
When the following events occur, the Device member of the MESSAGE structure will be
equal to DEVICE_COM1.

The COM driver does not support flow control. If any form of flow control, such as
XON and XOFF is required, it is the application�s responsibility to monitor the status
of flow control, and whether to send data or not at appropriate times.

Note: Events are always sent to the task that has opened the communications port.

Event Description

COMM_CONTROL_CHANGE This event indicates a level change on the DTR serial port
input. The new state of the control line is placed in the
SubMsg field.

COMM_PATTERN_NOTIFY This event indicates that the pattern registered with
CommRegisterNotifyPattern() has been detected on the
serial port while no application has it opened.
Note: This message is only generated when no application
has opened the serial port.

COMM_RX_AVAILABLE This event indicates that the serial receive queue has
changed from empty to not empty. Only one
COMM_RX_AVAILABLE message is sent for each time that the
serial buffer changes from empty to not empty.
An application will not receive another COMM_RX_AVAILABLE
message until it has completely emptied the serial buffer and
new characters are received. See CommReadBuffer() for
more details.

COMM_RX_ERROR If a communications error, such as receive overrun, framing
error, or a parity error is received, a COMM_RX_ERROR message
is sent to the task that opened the COM port. The SubMsg
field of the message will contain the specific error number.

COMM_TX_EMPTY A COMM_TX_EMPTY event is sent to the task that opened the
COM port whenever the port’s transmit FIFO, as well as the
serial transmit hardware, becomes completely empty.

POWER_OFF When the device is powered off while an application has the
COM port open, the COM port is automatically closed. If the
application wishes to resume use of the COM port when the
device is turned back on, it must open the port again.
POWER_OFF is not a COM-specific event, but applications
making use of the COM port must be aware of the effects of
being powered off.

Chapter 8: Device events

120 BlackBerry Software Development Kit

Operating System API Reference Guide 121

Index of functions
F
File system

DbAddOrphan(), 49
DbAddRec(), 49
DbAndRec(), 51
DbDelete(), 52
DbDeleteRec(), 52
DbFileClose(), 53
DbFileInfo(), 54
DbFileOpen(), 54
DbFileRead(), 55
DbFileSeek(), 55
DbFileSysInfo(), 56
DbFileWrite(), 57
DbFindNext(), 58
DbFirstRec(), 59
DbFreeRec(), 59
DbFreeSpace(), 59
DbGetHandle(), 60
DbMaxHandles(), 61
DbMaxNewRecSize(), 61
DbName(), 62
DbNextRec(), 62
DbPointTable(), 63
DbPointTableEdition(), 63
DbRecSize(), 63
DbReplaceOrphan(), 64
DbReplaceRec(), 64
DbSecure(), 65
DbSize(), 65

K
Keypad

KeypadBeep(), 77
KeypadRate(), 77
KeypadRegister(), 78

L
LCD

LcdClearDisplay(), 82
LcdClearToEndOfLine(), 83
LcdCopyBitmapToDisplay(), 83

LcdCopyDisplay(), 84
LcdCreateDisplayContext(), 84
LcdDestroyDisplayContext(), 85
LcdDrawBox(), 85
LcdDrawLine(), 86
LcdForceRefresh(), 87
LcdGetCharacterWidth(), 87
LcdGetConfig(), 88
LcdGetContrast(), 88
LcdGetCurrentFont(), 88
LcdGetCursorPoint(), 88
LcdGetDisplayContext(), 89
LcdGetFontHeight(), 89
LcdGetFontName(), 91
LcdGetNumberOfFonts(), 91
LcdGetPixel(), 92
LcdGetRegion(), 92
LcdGetStringWidth(), 93
LcdIconsEnable(), 93
LcdPutStringXY(), 94
LcdRasterOp(), 96
LcdReplaceFont(), 99
LcdScroll(), 99
LcdSetContrast(), 100
LcdSetCurrentFont(), 100
LcdSetCursorPoint(), 101
LcdSetDisplayContext(), 101
LcdSetPixel(), 102
LcdSetRegion(), 102
LcdSetTextWindow(), 103

M
Memory

RimFree(), 24
RimGetMaxAllocSize(), 24
RimMalloc(), 24
RimMemoryRemaining(), 25
RimRealloc(), 25

P
palm-sized device

RimConfigureLEDs(), 35, 43

Index of functions

122 BlackBerry Software Development Kit

RimSetLed(), 44
Password

RimPasswordFailureCount(), 34
RimSetPassword(), 33
RimVerifyPassword(), 33

Peripheral
PeripheralGetId(), 108
PeripheralGetOwner(), 108
PeripheralPowerSupply(), 108
PeripheralRegister(), 108
PeripheralStatusControl(), 109
PeripheralUnregister(), 109

S
Serial

CommClosePort(), 70
CommGetDtr(), 70
CommOpenPort(), 70
CommReadBuffer(), 71
CommReadChar(), 71
CommRegisterNotifyPattern(), 72
CommSendBuffer(), 73
CommSendChar(), 73
CommSetDsr(), 73
CommSetFlowControl(), 74
CommSettings(), 74
CommStandbyMode(), 74
CommTxCount(), 75

String
RimDebugPrintf(), 36
RimSprintf(), 44
RimVsprintf(), 46

System
RimAlertNotify(), 30
RimCatastrophicFailure(), 35
RimConfigureLEDs(), 35, 43
RimCreateThread(), 13
RimDisableAppSwitch(), 13
RimEnableAppSwitch(), 13
RimFindTask(), 14
RimGetAlarm(), 26
RimGetAlertConfiguration(), 31
RimGetBatteryLevel(), 36
RimGetBatteryStatus(), 37
RimGetCurrentTaskID(), 14
RimGetDeviceInfo(), 37
RimGetForegroundApp(), 14
RimGetLanguage(), 38

RimGetLoadedAppInfo(), 38
RimGetMessage(), 14
RimGetMessageRaw(), 39
RimGetNumberOfTunes(), 31
RimGetOSversion(), 40
RimGetPID(), 16
RimGetSetOfLanguages(), 41
RimGetTuneName(), 31
RimHolsterStatus(), 41
RimInitiateReset(), 42
RimInvokeTaskSwitcher(), 16
RimPeekMessage(), 16
RimPostMessage(), 17
RimPowerDownHandheld(), 42
RimRegisterForPowerDown(), 42
RimRegisterMessageCallback(), 17
RimReplyMessage(), 19
RimRequestForeground(), 20
RimRequestFullPowerOff(), 42
RimRequestPowerOff(), 42, 43
RimRequestStorageMode, 43
RimRequestStorageMode(), 43
RimSendMessage(), 20
RimSendSyncMessage(), 20
RimSetAlarmClock(), 28
RimSetAlertConfiguration(), 32
RimSetLanguage(), 43
RimSetLed(), 44
RimSetPID(), 21
RimSetReceiveFromDevice(), 21
RimSleep(), 30
RimSpeakerBeep(), 32
RimStackUsage(), 46
RimTaskYield(), 22
RimTerminateThread(), 22
RimTestAlert(), 32
RimToggleMessageReceiving(), 23
RimWaitForSpecificMessage(), 23

T
Time

RimGetDateTime(), 26
RimGetIdleTime(), 27
RimGetTicks(), 27
RimKillTimer(), 27
RimSetDate(), 28
RimSetTime(), 28
RimSetTimer(), 29

Operating System API Reference Guide 123

Index
A
alarm clock See real-time clock
ALARM_EXPIRED See RTC_ALARM_EXPIRED
API functions

keypad, 77
LCD, 82
serial communications, 69

application server, 16, 21, 116
application stack size, 13
applications

reject incoming messages, 23
retrieving information, 38
stopping, 30
waiting for specific message, 23

B
background application

bringing to foreground, 13, 20, 113
requesting handle, 14

base station, 118
BASE_STATION_CHANGE, 118
battery, 43
battery power

battery level, 36
low batteries, 112, 118
recharging the batteries, 112
tips for conserving power, 114

BATTERY_GOOD, 112
BATTERY_LOW, 112
BATTERY_UPDATE, 112
BATTERY_UPDATE event, 37
bitblt See bitmaps, copying
bitmaps

copying, 96
displaying, 83

C
clearing display, 82, 83, 99
CLOCK_UPDATE See RTC_CLOCK_UPDATE

COM port
closing, 70
configuration, 74
get DTR state, 70
opening, 70
receive buffer, 71
receiving characters, 71
sending characters, 73
setting DSR state, 73
setting flow control, 74
standby mode, 74
transmit buffer, 73, 75

com port
device events, 119

COMM_CONTROL_CHANGE, 119
COMM_PATTERN_NOTIFY, 119
COMM_PATTERN_NOTIFY event, 72
COMM_RX_AVAILABLE, 119
COMM_RX_ERROR, 119
COMM_TX_EMPTY, 119
contrast, 88, 100
cursor

getting position, 88, 92
moving, 101

customizing country-dependent behaviour, 38, 43
customizing language-dependent behaviour, 38, 43

D
data packet, 118
database

creating, 60
database / file system

adding record, 49
attaching record, 49
closing file, 53
creating database, 60
database handle, 56, 60, 62
database name, 56, 62
database size, 52, 65
deleting record, 52

Index

124 BlackBerry Software Development Kit

error codes, 67
file status information, 54
finding the first record, 59
finding the next record, 62
free space, 59
maximum file handles, 61
maximum new record size, 61
maximum record handles, 61
modifying an orphan, 64
modifying record, 51, 64
opening file, 54
pattern matching, 58
reading, 55
record handles, 59
record pointer table, 63
record size, 63
secure database, 65
setting current position, 55
writing data to file, 57

Database / file system error codes, 67
database name

maximum size, 60
device events, 111

com, 119
holster, 115
keypad, 115
radio, 118
rtc (real-time clock), 114
system, 112
timer, 114

display
enable and disable icons, 93

display context
copying, 84
copying bitmap to, 83
creating, 84
defined, 84, 89
deleting, 85
getting handle, 89
setting, 101

displaying
graphics, 83, 85, 86
text, 94, 103

DSR, 73
DTR, 70, 72
dtr, 119

E
events

BASE_STATION_CHANGE, 118
BATTERY_GOOD, 112
BATTERY_LOW, 112

BATTERY_UPDATE>, 112
COMM_CONTROL_CHANGE, 119
COMM_PATTERN_NOTIFY, 119
COMM_RX_AVAILABLE, 119
COMM_TX_EMPTY, 119
IN_HOLSTER, 115
INITIALIZE, 14
KEY_DOWN, 116
KEY_REPEAT, 116
KEY_STATUS, 116
MEMORY_LOW, 112
MESSAGE_NOT_SENT, 118
MESSAGE_SENT, 118
MESSAGE_STATUS, 118
NETWORK_STARTED, 118
notification, 20, 28
OUT_OF_HOLSTER, 115
PERIPHERAL_ID_UPDATE, 112
POWER_OFF, 112, 119
POWER_UP, 14, 112
queue, 16
RADIO_TURNED_OFF, 118
RTC_ALARM_EXPIRED, 114
RTC_CLOCK_UPDATE, 114
SIGNAL_LEVEL, 118
SWITCH_BACKGROUND, 20, 113
SWITCH_FOREGROUND, 20, 113
TASK_LIST_CHANGED, 113
THUMB_CLICK, 115
THUMB_ROLL_DOWN, 115
THUMB_ROLL_UP, 115
THUMB_UNCLICK, 115

F
files

creating streamed, 60
streamed, creating, 60

flash file system, 112
fonts

attributes, 84
creating new font, 99
getting name, 91
getting number of, 91
height of current font, 88, 89
selecting new font, 100
width of current font, 87

foreground application, 16
requesting handle, 14
sending to background, 13, 20, 113

formatting and printing characters to output stream, 36
formatting character strings, 44, 46
freeing memory, 24

Index

Operating System API Reference Guide 125

G
getting

amount of time handheld has been on, 27
battery level, 36
battery status, 37
message, 14
raw messages, 39

getting device information, 37
getting name of tune, 31
getting number of tunes, 31

H
holster, 41

device events, 115

I
idle time, 27
IN_HOLSTER, 115
INITIALIZE event, 14
inter-process communications

asynchronous (non-blocking) send, 17

K
KEY_DOWN, 116
KEY_REPEAT, 116
KEY_STATUS, 116
keypad, 27

configuring for auto key repeat, 77
device events, 115
functions, 77
intercepting global hot keys, 78
repeating keys, 78, 116

L
language

retrieving available, 41
retrieving current, 38
setting current, 43

LCD
clearing display, 82, 83, 99
copying bitmaps, 96
copying displays, 84
creating display context, 84
creating new font, 99
deleting display context, 85
disabling icons, 93
displaying bitmaps, 83
displaying graphics, 85
displaying text, 94, 103
drawing lines, 86

enabling icons, 93
functions, 82
getting contrast, 88
getting current font width, 87
getting cursor position, 88, 92
getting display context handle, 89
getting font name, 91
getting height of current font, 88, 89
getting number of fonts, 91
getting region, 92
getting width of string, 93
moving the cursor, 101
refreshing, 87
seleting new font, 100
setting contrast, 100
setting display context, 101
setting region, 102
turning off pixels, 102
turning on pixels, 102

led
configure lighting, 35
set state, 44

M
memory

allocating, 24
freeing, 24
reallocating, 25
remaining, 25

MEMORY_LOW, 112
message passing, 16, 17, 20, 22, 39, 45
MESSAGE structure, 15, 38, 39
MESSAGE_NOT_SENT, 118
MESSAGE_SENT, 118
MESSAGE_STATUS, 118
messages

replying, 19
sending synchronous, 20

modem out of coverage, 118
multiple applications, 14, 72
multi-tasking, 5

N
network coverage too poor for transmission, 118
NETWORK_STARTED, 118
notification, 30, 31, 32

O
operating system

version, 40
OUT_OF_HOLSTER, 115

Index

126 BlackBerry Software Development Kit

P
pager.h, 98
palm-sized wireless handheld, 35, 43, 44
password

failures, 34
setting, 33
verifying, 33

pattern matching, 58, 72
PERIPHERAL_ID_UPDATE, 112
peripherals

deregistering, 109
owner, 108
pin status, 108
power supply, 108
registring, 108
status control, 109

PID, 16, 21
pixel

turning on and off, 102
width of string, 93

power
power down, 42, 43
registering for power down, 42
storage mode, 43

power adapter, 112
power save mode, 112
POWER_OFF, 112, 119
POWER_OFF event, 42, 43
POWER_UP, 112
POWER_UP event, 14

R
radio device events, 118
RADIO_TURNED_OFF, 118
RasterOp See bitmaps, copying
real-time clock

alarm clock, 115
device events See rtc, device events
next alarm, 26
reading the date and time, 26
setting the alarm clock, 28
updating date and time, 114

receiving from devices, 21
receiving packets, 118
refreshing the LCD, 87
repeating keys, 78, 116
resetting, 42
right justify, 94
RimGetDateTime(), 114
RimHolsterStatus(), 115
RimSetTimer(), 114
rtc device events, 114
RTC_ALARM_EXPIRED, 114

RTC_ALARM_EXPIRED events, 28
RTC_CLOCK_UPDATE, 114

S
scrolling, 99
sending

data packets, 118
synchronous messages, 20

serial communications
constants and error codes, 75
functions, 69

Serial communications constants and error codes, 75
setting the time on the handheld, 28
signal strength, 118
SIGNAL_LEVEL, 118
simulator

restrictions, 28, 36
storage mode, 43
SubMsg field, 113, 115, 117, 118, 119
SWITCH_BACKGROUND, 113
SWITCH_BACKGROUND event, 20
SWITCH_FOREGROUND, 113
SWITCH_FOREGROUND event, 20
system

allocating memory, 24
cancelling the timer, 27
choosing value for stack size, 46
creating threads, 13
customizing the language, 38
device events, 112
disabling switching of applications, 13
enabling switching of applications, 13
finding if handheld is in the holster, 41
finding task ID, 14
formatting characters, 44, 46
freeing memory, 24
generation of tones, 32
getting alarm, 26
getting battery level, 36
getting battery status, 37
getting configuration settings, 31
getting current task ID, 14
getting device information, 37
getting foreground application, 14
getting idle time, 27
getting name of tune, 31
getting next message, 14
getting number of tunes, 31
getting process attributes, 16
getting raw messages, 39
getting the date and time, 26
getting the OS version, 40
getting time handheld has been on, 27

Index

Operating System API Reference Guide 127

notifying the user, 30
powering down, 42
printing text to debug stream, 36
processing messages, 16, 17
reallocating memory, 25
receiving from device, 21
registering callbacks, 17
rejecting incoming applications, 23
remaining memory, 25
replying to messages, 19
resetting the handheld, 42
sending messages, 20
sending synchronous messages, 20
setting alarm, 28
setting configuration settings, 32
setting process attributes, 21
setting the date, 28
setting the language, 43
setting the time on the handheld, 28
setting the timer, 29
stopping applications for a specified period of

time, 30
structures, 7
switching tasks, 16, 20
task yielding, 22
terminating threads, 22
testing configuration settings, 32
turning power off, 42, 43
unrecoverable errors, 35
waiting for specific message, 23

System structures, 7

T
task ID, 14, 15, 16, 39
task switching, 16, 20, 21, 113

preserving the display, 84, 89
task yielding, 22, 39
TASK_LIST_CHANGED, 113
text See displaying

text
threads, 14

defined, 13
terminating, 22

THUMB_CLICK, 115
THUMB_ROLL_DOWN, 115
THUMB_ROLL_UP, 115
THUMB_UNCLICK, 115
TIME structure, 26
timer

cancelling, 27
device events, 114
ID, 27
setting, 29, 114

tone generator, 30, 31, 32
trackwheel, 27
tunes

getting name, 31
getting number, 31

U
unrecoverable error, 35

V
vibrator device, 30, 31, 32

Index

128 BlackBerry Software Development Kit

© 2002 Research In Motion Limited
Produced in Canada

	Contents
	About this guide
	Related documents

	System API
	Structures
	AlertConfiguration
	DEVICE_INFO
	MESSAGE
	PID
	TIME

	Thread and communication functions
	RimCreateThread
	RimDisableAppSwitch
	RimEnableAppSwitch
	RimFindTask
	RimGetCurrentTaskID
	RimGetForegroundApp
	RimGetMessage
	RimGetPID
	RimInvokeTaskSwitcher
	RimPeekMessage
	RimPostMessage
	RimRegisterMessageCallback
	RimReplyMessage
	RimRequestForeground
	RimSendMessage
	RimSendSyncMessage
	RimSetPID
	RimSetReceiveFromDevice
	RimTaskYield
	RimTerminateThread
	RimToggleMessageReceiving
	RimWaitForSpecificMessage

	Memory allocation functions
	RimFree
	RimGetMaxAllocSize
	RimMalloc
	RimMemoryRemaining
	RimRealloc

	Time functions
	RimGetAlarm
	RimGetDateTime
	RimGetIdleTime
	RimGetTicks
	RimKillTimer
	RimSetAlarmClock
	RimSetDate
	RimSetTime
	RimSetTimer
	RimSleep

	User notification functions
	RimAlertNotify
	RimGetAlertConfiguration
	RimGetNumberOfTunes
	RimGetTuneName
	RimSetAlertConfiguration
	RimSpeakerBeep
	RimTestAlert
	Password functions
	RimSetPassword
	RimVerifyPassword
	RimPasswordFailureCount

	Miscellaneous functions
	RimCatastrophicFailure
	RimConfigureLEDs
	RimDebugPrintf
	RimGetBatteryLevel
	RimGetBatteryStatus
	RimGetDeviceInfo
	RimGetLanguage
	RimGetLoadedAppInfo
	RimGetMessageRaw
	RimGetOSversion
	RimGetSetOfLanguages
	RimHolsterStatus
	RimInitiateReset
	RimPowerDownHandled
	RimRegisterForPowerDown
	RimRequestFullPowerOff
	RimRequestPowerOff
	RimRequestStorageMode
	RimSetLanguage
	RimSetLed
	RimSprintf
	RimStackUsage
	RimVsprintf

	File System API
	Structures
	FileInfoType
	FileSysInfoType

	Functions
	DbAddOrphan
	DbAddRec
	DbAndRec
	DbDelete
	DbDeleteRec
	DbFileClose
	DbFileInfo
	DbFileOpen
	DbFileRead
	DbFileSeek
	DbFileSysInfo
	DbFileWrite
	DbFindNext
	DbFirstRec
	DbFreeRec
	DbFreeSpace
	DbGetHandle
	DbMaxHandles
	DbMaxNewRecSize
	DbName
	DbNextRec
	DbPointTable
	DbPointTableEdition
	DbRecSize
	DbReplaceOrphan
	DbReplaceRec
	DbSecure
	DbSize

	Return codes

	Serial communications API
	Serial communications functions
	CommClosePort
	CommGetDtr
	CommOpenPort
	CommReadBuffer
	CommReadChar
	CommRegisterNotifyPattern
	CommSendBuffer
	CommSendChar
	CommSetDsr
	CommSetFlowControl
	CommSettings
	CommStandbyMode
	CommTxCount

	Constants
	Error Codes
	Events

	Keypad API
	Functions
	Keypad::KeypadBeep
	Keypad::KeypadRate
	Keypad::KeypadRegister

	Constants
	Events

	LCD API
	Structures
	LcdConfig

	LCD functions
	LcdClearDisplay
	LcdClearToEndOfLine
	LcdCopyBitmapToDisplay
	LcdCopyDisplay
	LcdCreateDisplayContext
	LcdDestroyDisplayContext
	LcdDrawBox
	LcdDrawLine
	LcdForceRefresh
	LcdGetCharacterWidth
	LcdGetConfig
	LcdGetContrast
	LcdGetCurrentFont
	LcdGetCursorPoint
	LcdGetDisplayContext
	LcdGetFontHeight
	LcdGetFontName
	LcdGetNumberOfFonts
	LcdGetPixel
	LcdGetRegion
	LcdGetStringWidth
	LcdIconsEnable
	LcdPutStringXY
	LcdRasterOp
	LcdReplaceFont
	LcdScroll
	LcdSetContrast
	LcdSetCurrentFont
	LcdSetCursorPoint
	LcdSetDisplayContext
	LcdSetPixel
	LcdSetRegion
	LcdSetTextWindow

	Constants
	Return codes

	Peripheral API
	Functions
	PeripheralGetId
	PeripheralGetOwner
	PeripheralPowerSupply
	PeripheralRegister
	PeripheralStatusControl
	PeripheralUnregister

	Device events
	SYSTEM device events
	TIMER device events
	RTC (real-time clock) device events
	HOLSTER device events
	KEYPAD device events
	RADIO device events
	COM device events

	Index of functions
	Index

