
BlackBerry Software
Development Kit
Version 2.5

Developer Guide

BlackBerry Software Development Kit Version 2.5 Developer Guide
Last modified: 18 July 2002

Part number: PDF-04632-001

At the time of publication, this documentation complies with RIM Wireless Handheld version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, �Always On, Always Connected�, the �envelope in motion� symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers.

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Published in Canada

Contents

About this guide.. 5
Audience ...5
Developer support...5
Other documentation ..5

CHAPTER 1 Getting started .. 7
About the BlackBerry SDK ...8
Installing the BlackBerry SDK..10
Configuring Microsoft Visual Studio..11

CHAPTER 2 Loading applications .. 15
Checking .dll files ..16
Loading applications for testing..16
Deploying applications ...25

CHAPTER 3 Using the simulator... 29
About the simulator ..30
Starting the simulator..30
Using the simulator ...35
Debugging hints...45

CHAPTER 4 Programming overview.. 47
Understanding the application environment ..48
Operating system...48
API hierarchy ...53
Application development steps...54

CHAPTER 5 Writing an application .. 55
Basic program structure..56
Defining an entry point...56
Registering the application...57
Entering the message loop..58
Adding the application to the Home screen..59
Setting up a basic program structure..60
Minimizing memory usage ..63
Defining version information ..64
Other example programs..66

CHAPTER 6 Operating system services ... 67
Inter-process communication...68
File system services ...70

CHAPTER 7 Radio communications ... 77
About the Radio API ...78
Data packets..79
Transmitting packets...79
Receiving packets...80

CHAPTER 8 Writing UI applications ... 81
Screens ...82
Menus ..83
Fields..84
Status boxes ..85
Dialog boxes ...86

CHAPTER 9 Messaging.. 87
About the Messaging API...88
Using the Messaging API ...89

CHAPTER 10 Ribbon and Options .. 93
Ribbon ...94
Options ..95

CHAPTER 11 Database tutorial .. 97
Database API classes ...98
Database API features ...100
Setting up a database...101
Storing contacts ..103
Displaying contacts in a list..103
Defining another contact view...105
Editing a contact...106
Displaying a list using different views ...107
Updating a list ..108
UI/Database interaction ..109
Editing a contact...109
Adding an email address..110
Saving a contact..111
Removing an email field...112

CHAPTER 12 Bitmaps, fonts, and sounds .. 115
Creating bitmaps ...116
Converting existing bitmaps ..117
Creating custom fonts ...118
Resource .dll files ...120

CHAPTER 13 C library compatibility ... 125
Summary of C compatibility ..126
Compatible functions ..127
Incompatible functions ...127

Index .. 131

About this guide

This guide explains how to use the BlackBerry Software
Development Kit (SDK) to develop applications for the RIM Wireless
Handheld�.

This guide explains these topics:

� installing and configuring the development environment

� testing applications using the simulator

� loading applications onto a handheld

� steps for writing, testing, and debugging applications

Audience
This guide assumes that you have experience with C++ programming
using Microsoft Visual Studio.

Developer support
For technical updates, FAQs, and a developer�s discussion forum,
visit the BlackBerry Developer Zone at
http://www.blackberry.net/developers.

Other documentation
The BlackBerry SDK also includes the following documentation:

� README.txt

The README.txt file is installed with the BlackBerry SDK. It
provides information on any known issues and workarounds, as
well as documentation updates.

http://developers.rim.net/

About this guide

6 BlackBerry Software Development Kit

� API Reference Guides

Reference guides are provided for each application programming interface (API).
These following guides provide detailed descriptions of functions, structures, and
error codes:

� Address Book API Reference Guide

� AutoText API Reference Guide

� Operating System API Reference Guide

� Database API Reference Guide

� Desktop API Reference Guide

� Messaging API Reference Guide

� Radio API Reference Guide for Mobitex

� Radio API Reference Guide for DataTAC

� Remote Address Lookup API Reference Guide

� Ribbon and Options API Reference Guide

� System Utilities API Reference Guide

� User Interface API Reference Guide

Chapter 1
Getting started

This section provides information on the following topics:

� About the BlackBerry SDK

� Installing the BlackBerry SDK

� Configuring Microsoft Visual Studio

Chapter 1: Getting started

8 RIM Software Development Kit

About the BlackBerry SDK
The RIM Wireless Handheld features a 32-bit Intel 386� processor that uses the same
instruction set as a Windows computer. The handheld has its own multitasking
operating system, with built-in messaging.

The BlackBerry SDK provides a set of APIs and tools for you to develop C++
applications to run on the RIM Wireless Handheld, version 2.0 or later.

The BlackBerry SDK package includes the following items:

� API libraries

� simulator

� sample applications

APIs
The following table lists the API libraries that are included in the BlackBerry SDK.
Most applications need to use the Operating System, UI Engine, and Ribbon APIs.
Paths to library files are shown relative to the SDK lib\datatac and lib\mobitex
directories.

API/library Description Documentation

Address Book API
Address.lib

Create, edit, and retrieve contact information
from the Address Book database.

Address Book API Reference Guide
“address.h”

AutoText API
AutoText.lib

Customize the editing of user text, using the
AutoText application.

AutoText API Reference Guide
“AutoText.h”

File system API
..\RIMOS.lib

Access files on the handheld file system. Operating System API Reference Guide
“FileSys.h”

Database API
Database.lib

Define new records and create, edit, and retrieve
information stored in the database.

Database API Reference Guide
“database.h”
“DataBuffer.h”
“storage.h”

Event Logger API
EventLogger.lib

Provide a standardized method for recording
events in the handheld’s persistent store.

System Utilities API Reference Guide
“iEventLogger.h”
“iEventViewer.h”

Keypad API
..\RIMOS.lib

Customize the keypad.
Actual keystrokes are passed as messages.

Operating System API Reference Guide
“KeyPad.h”

About the BlackBerry SDK

Developer Guide 9

LCD API
..\RIMOS.lib

Manages low-level display functions, screen
buffers, and string management; use the UI APIS
for dialog boxes, menus, and edit classes.

Operating System API Reference Guide
“LCD_API.h”

Messaging API
message.lib

Send email and other messages. Messaging API Reference Guide
“msg_api.h”

Options API
ribbon.lib

Control system-wide programming of features
such as the date, time, and screen/keyboard
settings.

Ribbon and Options API Reference Guide
“Options.h”

Radio API
..\RIMOS.lib

Gain access to radio network and status of packet
communications.

Radio API Reference Guide
“datatac.h”
“mobitex.h”

Registrar API
Registrar.lib

Manage registration and instantiation of objects,
and object lifetimes and memory allocation.

System Utilities API Reference Guide
“ibase.h”
“iptr.h”
“istr.h”

Remote Address
Lookup API

Search for and retrieve entries from a company
or third-party Global Address List or other
directory.

Remote Address Lookup API Reference
Guide
“iDirectoryLookupQuery.h”
“iDirectoryLookupClient.h”
“iDirectoryLookupManager.h”

Ribbon API
ribbon.lib

Register an application in the functions list on
the Home screen.

Ribbon and Options API Reference Guide
“ribbon.h”

Serial Comm API
..\RIMOS.lib

Access and configure the serial port on the
handheld.

Operating System API Reference Guide
“Comm.h”

System API
..\RIMOS.lib

Manage threads, messaging, and task switching,
memory allocation, timers, and the system clock.

Operating System API Reference Guide
“Rim.h”

String Utilities API
..\utilities.lib

Use common string utilities not provided in the
standard C rountines.

System Utilitites API Reference Guide
“utilities.h”

User Interface API
UI32.lib

Manage high-level display of information and
user input, such as creating screens, menus, and
dialogs.

UI Engine API Reference Guide
“UI32.h”

API/library Description Documentation

Chapter 1: Getting started

10 RIM Software Development Kit

Tools
The BlackBerry SDK adds an application wizard to Microsoft Visual Studio for RIM
application projects.

In addition, the SDK provides a GUI-based simulator for testing your applications.
The simulator can be integrated into Microsoft Visual Studio to use its full suite of
debugging tools.

In addition, the SDK provides a command-line utility for loading applications onto a
handheld.

Installing the BlackBerry SDK

System requirements
Your computer must meet the following requirements to support the RIM SDK:

� Operating system � Windows 95/98, Windows ME, Windows NT, Windows
2000, or Windows XP

� Development environment � Microsoft Visual Studio 6.0 or later, or
Microsoft Windows Development Environment

To install the BlackBerry SDK
You must install Microsoft Visual Studio 6.0 before you install the BlackBerry SDK.

1. Double-click the installation icon for the BlackBerry SDK. The InstallShield
Wizard Welcome screen appears.

2. Click Next. The License Agreement for the BlackBerry SDK appears.

3. Read the license agreement carefully. If you do not agree to its terms, select I do
not accept the terms of this license agreement; the installation process stops.
If you agree to its terms, select I accept the terms of this license agreement.

4. Click Next. The Customer Information screen appears.

5. Type your user name and company name.

6. From the options at the bottom of the screen, select whether to restrict the use of
the SDK to your own user account or to allow any user on this computer to use
the SDK.

7. Click Next. The Setup Type screen appears.

8. For most installations, leave the Complete option selected.

9. Click Next.

10. Click Install. The InstallShield Wizard installs the SDK.

11. Click Finish. The installation process completes.

Configuring Microsoft Visual Studio

Developer Guide 11

Directory structure
The default installation location for the SDK is C:\Program Files\Research In
Motion\BlackBerry Handheld SDK 2.5.0.

The BlackBerry SDK has the following directory structure.

Configuring Microsoft Visual Studio
The installation process for the BlackBerry SDK creates a �BlackBerry Application�
project type in Microsoft Visual Studio. This project type defines the appropriate
settings for the project within the Visual Studio development environment.

You must be familiar with Microsoft Visual Studio to develop applications. You must
purchase and become familiar with this application separately from the BlackBerry
SDK.

The BlackBerry SDK is designed to make use of the libraries and features in Microsoft
Visual Studio, version 5.0 or later.

Directory Description

App_samples Contains sbdirectories with sample code that demonstrates how to use
some of the RIM Wireless Handheld application APIs.

desktop Contains header and library files for the Desktop API.

device Contains operating systems for the handhelds.

dll Contains application and resource .dll files for the simulator and the
handheld; these are subdivided into datatac and mobitex directories.

Include Contains required header files.

lib Contains libraries for building applications; network-specific libraries
are subdivided into datatac and mobitex directories.

OS_samples Contains example programs that demonstrate aspects of the RIM
Wireless Handheld operating system. The files ping.c and dt_ping.c
are specific to the Mobitex and DataTAC networks, respectively.

Simulator TContains the RIM Wireless Handheld simulator binaries, .ini file, and
legacy files that might be required by some applications.

tools Contains Windows-based tools provided with the SDK, including
programmer.exe.

Chapter 1: Getting started

12 RIM Software Development Kit

� Handheld applications are built as Windows .dll files, but they are not used as
Windows applications. The final .dll file is stripped of extraneous information
and then ported into the handheld operating system.

� Because Windows sees the handheld applications as .dll files, Visual Studio
enables you to use nearly all development facilities that are available for
Windows, including the development environment, source level debugging, and
breakpoints.

Project settings
The BlackBerry Application project type has the following settings.

C/C++ tab:

� In the Preprocessor category, the include and include\internal directories
are added to Additional Include Directories field.

� In the Code Generation category, Struct member alignment is set to 2 bytes and
Processor is set to 80386.

� In the C/C++ Language category, all options are disabled so that
Windows-specific code is not invoked.

Link tab:

� In the General category, the files OsEntry.obj, RimOs.lib, and libc.lib are
included in the Object/library modules field. The Ignore all default libraries
option is enabled.

� In the Input category, the full path to the SDK lib directory is added in the
Additional library field.

Creating projects
The BlackBerry SDK installs a project wizard into the development environment.

To create a project using the wizard, complete the following steps:

1. Start Visual C++ 6.0.

2. On the File menu, click New. The New screen appears.

3. Click the Projects tab.

4. Select BlackBerry Application and type a project name.

5. Select a network (DataTAC or Mobitex).

6. Select the persistence of the application. The following table explains the options.

Configuring Microsoft Visual Studio

Developer Guide 13

7. Click Finish.

8. Click OK to confirm the options.

The new project appears in the Microsoft Visual Studio project workspace.

9. In the Microsoft Visual Studio If you go to the File View, double-click the source
file for the project.

Note that the App Wizard has created a template for a typical handheld
application.

The Application Wizard creates code that performs the following tasks:

� defines PagerMain() and, for non-persistent applications, PagerFunc()

� instantiates a UIEngine object (g_UIEngine)

� instantiates a Screen object (MyScreen) with these member functions:
MyScreen::OnKey()

MyScreen::OnMenuItem()

MyScreen::OnMessage()

� declares these global fields:
AppStackSize

g_menuItemCount

g_MenuStrings and an enumerated type for menus
VersionPtr

If your application will not use the UI Engine API to display a user interface, you
should rewrite this code.

Option Meaning

Persist The program never really exits, and resources are not freed when the
user returns to the ribbon. The generated code uses
RibbonRegisterApplication() to register with the ribbon;
program identifiers are set up in PagerMain().

Exit (dynamically
loaded/unloaded)

The program exits and resources are freed when the user returns to the
ribbon. The generated code sets up program identifiers in
PagerFunc(), and registers that function using
RibbonRegisterFunction().

Chapter 1: Getting started

14 RIM Software Development Kit

Setting project properties
When you create a new project for a handheld application, you must set the
debugging options to run applications in the simulator.

1. In Visual C++ 6.0, select a project.

2. On the Project menu, click Settings.

A Project Settings screen appears.

3. From the Settings For drop-down list, select All Configurations.

4. Click the Debug tab.

5. In the Executable for debug session field, type the full path to the OSLoader.exe.
For example:

C:\Program Files\Research In Motion\ BlackBerry Handheld SDK 2.5\
simulator\OSLoader.exe

6. In the Program arguments field, type one of the following file names:

� OsPgrMb.dll (RIM Wireless Handheld 950�)

� OsHHMb.dll (RIM Wireless Handheld 957�)

� OsPgrDt.dll (RIM Wireless Handheld 850�)

� OsHHDt.dll (RIM Wireless Handheld 857�)

You can also type other command line options (refer to �Using the simulator� on
page 35).

7. In the Working directory field, specify the folder in which the simulator .dll files
are located.

8. Click OK.

When you debug this project in Visual C++ 6.0, it runs the application in the
simulator.

Refer to �Using the simulator� on page 35 for more information on using the
simulator.

Chapter 2
Loading applications

This section provides information on the following topics:

� Checking .dll files

� Loading applications for testing

� Deploying applications

Chapter 2: Loading applications

16 BlackBerry Software Development Kit

Checking .dll files
Before you load .dll files onto the handheld, you can use the DLL utility to view
statistics, such as the amount of flash memory and RAM that the .dll file will require
on the handheld.

The DLL utility is DllUtil.exe in the SDK tools folder.

There are two forms of the command:

DllUtil SIZE [-R] files [files*]
DllUtil VER files [files*]

The files argument is a list of DLL or OS files, and can contain wildcards (* and ?).

SIZE command

With the SIZE command, dllutil displays the flash memory, RAM, and thunk
resources required by the DLL on the handheld.

-R

When this switch is used, dllutil displays the size of the .dll files without the
DLL relocation information.

VER command

With the VER command, dllutil displays version information. Beside each valid file,
it lists versions for both imported and exported APIs. It also lists valid operating
systems along with file version information.

Loading applications for testing
The Programmer.exe tool provides a command line tool to add or update compiled
Windows .dll files on a handheld.

1. Insert the handheld into the cradle.

2. Exit the BlackBerry Desktop Manager.

The programmer.exe utility cannot connect to the handheld if the Desktop
Manager utility is already running. Only one program can connect with the
handheld at a time.

3. Move to the tools folder in the SDK installation folder.

Note: This tool is intended for use by developers for development and testing purposes only.
To deploy production applications, you should use the Application Loader, which is part of the
BlackBerry Desktop Manager. Refer to "Deploying applications" on page 25 for more
information.

Loading applications for testing

Developer Guide 17

4. Type:
PROGRAMMER [-Pport] [-Sspeed] [-Wpassword] <command>

where:

<port> is the serial port to which the handheld is connected (default is COM1).

<speed> is the bit rate speed to the serial port (default is 115200).

<password> specifies the password for your handheld, if one has been set.

<command> is one of the following command options.

Command options
The following command options are supported:

Command Description

alloc [-e] [-d sectors]
[-a sectors]

moves breakpoint between application memory and file
system memory

batch filename runs programmer.exe commands stored in a file

dir [-s] lists applications currently on the handheld

erase [-A|-E] apps erases applications, OS, or both from the handheld

help [command]
help error

displays command usage information

load [-s] [-G] [-V] [-M]
[-d] apps or (group)

loads applications or groups of applications on the
handheld

map [-f] [-r] displays detailed flash memory and RAM maps

ver lists applications that are currently on the handheld,
including version information

wipe [-F | -A] irreversibly erases applications, the file system, or both
from handheld

Chapter 2: Loading applications

18 BlackBerry Software Development Kit

ALLOC command
Moves breakpoint between application memory and file system memory.

PROGRAMMER ALLOC [-E] [-D <sectors>] [-A <sectors>]

Description This command writes a new entry to the Flash Allocation Log and moves the
breakpoint between the file and application areas of memory. It is possible to move
only one, but then you would have an unused sector.

The command only reduces the size of an area if the sectors to be removed are empty.
This is rarely a problem with the OS and applications area, but might be a problem
with the File area, because there are no guarantees about the placement of
information.

When the File Area size is decreased, at least one blank sector must remain in the area.
You are advised to back up and pack your data before issuing the ALLOC command.

BATCH command
Run a batch file containing programmer commands.

PROGRAMMER BATCH batchfile

Description The batch command enables multiple commands to be placed in a file and run with a
single, short command. This command is useful if you need to perform the same
process repeatedly.

The batch file can contain one or more of the load, erase, dir, or batch� commands.
The results are committed to the handheld only if all commands are successfully
completed.

The maximum length of a line is 256 characters. Single commands can be broken into
multiple commands, if you have long file names.

Parameters -E Specifies the File Allocation Sector to be erased before writing
an entry.

-D sectors Specifies the new size of the file (or data) area in flash memory
sectors; the minimum size is 1.

-Asectors Specifies the new size of the OS and applications area in flash
memory.

Parameters batchfile Name of a file containing commands.

Loading applications for testing

Developer Guide 19

DIR command
List applications that are currently on the handheld.

PROGRAMMER DIR [-S]

Description The dir command generates a listing of the applications currently loaded on a
handheld. Unless the -S option is specified, this listing includes the names of the
applications and the amount of flash memory and RAM occupied by the applications.
The applications are grouped as they are grouped on the handheld.

Example The following command lists the applications on the handheld:

PROGRAMMER DIR

ERASE command
Erases applications, or OS, or both from the handheld.

PROGRAMMR ERASE –A
PROGRAMMR ERASE app_names

Description The Erase command erases the applications that are currently loaded on a handheld.
The names are not case sensitive and can be obtained using the PROGRAMMER DIR
command.

The space occupied by erased applications is only reclaimed when the entire group in
which it resides is erased.

Example The following command erases all applications on the handheld:

PROGRAMMER ERASE -A

The following command erases only the Address Book application:

PROGRAMMER ERASE ADDRESS.DLL

Parameters -S Specifies a short listing of only the application names.

Parameters -A Specifies that all applications and the application environment are
to be deleted.

app_ names Names of specific applications to be deleted

Chapter 2: Loading applications

20 BlackBerry Software Development Kit

HELP command
PROGRAMMER HELP [command]
PROGRAMMER HELP errors

Description The Help command invokes the built-in Help system. Help for a specific command
can be obtained by specifying it as an option. Help about error messages can be
obtained by specifying the errors command.

If the output is not redirected to a file, the help system uses a built-in paging system.
Press any key at the <MORE> prompts.

Example For help on the Load command, type:

PROGRAMMER HELP LOAD

For help on errors, type:

PROGRAMMER HELP ERRORS

For the main help page, type:

PROGRAMMER HELP HELP

LOAD command
Loads new applications or application environment onto the handheld.

PROGRAMMER LOAD [-S] [-G] [-V] [-M] [-D] apps or groups

Parameters command Name of the command for which you want help.

errors Causes programmer.exe to list descriptions of several error
messages that are not self-explanatory

Parameters -S Specifies that symbol information for all new applications
should be appended to a debug.dat file in the current
directory.

-G Specifies that the first application or group of applications
should be grouped with the last group found on the handheld.

-V Specifies checking file versions. By default, programmer checks
API versions and dependencies only.

Loading applications for testing

Developer Guide 21

Description The Load command loads new applications or the application environment onto the
handheld. Any old applications with the same name are erased. If an application is to
be replaced separately from other applications on the handheld, place it in its own
group.

Grouping programs

Because the flash memory can only be erased one 64-KB sector at a time, any
application that is to be erased and have its space reclaimed must not overlap with
other applications in the same 64-KB sector. Grouped applications are contiguous,
without regard to the 64-KB sector boundaries. As such, when invalidating an
application that is part of a group, the space cannot be reclaimed without erasing
other applications as well. Applications that are not grouped each occupy one or more
64-KB sectors, with the remainder of the last sector used being wasted.

Example The following command loads the application environment and applications onto the
handheld:

PROGRAMMER LOAD PAGER950.BIN UI32.dll (Address.dll AutoText.dll
Message.dll Options.dll Transport_RTP.dll)

The following command loads a new calculator application, grouping it with the
other applications:

PROGRAMMER LOAD -G Calculator.dll

-M Specifies that mappings of unresolved OS calls should be
displayed. The Application Loader maps unresolved OS calls
to an internal API, RimCatastrophicAPIFailure(). In all cases,
other unresolved links fail; only unresolved OS calls can be
mapped.

-D Specifies that unresolved OS calls should not be mapped to
RimCatastrophicAPIFailure().

apps or groups One or more files or groups of files to be loaded onto the
handheld. Individual files are specified alone. Groups of files
are enclosed in parentheses, brackets, or braces. There must be
spaces surrounding the brackets, as in the example.

Note: When loading or replacing the application environment (pagerx50.bin or
pagerx57.bin), it must be specified first on any load command.

Note: The ability to group programs is specific to programmer.exe. Although the desktop
loader program will recognize groups already on a RIM Wireless Handheld , it cannot load files
in groups.

Chapter 2: Loading applications

22 BlackBerry Software Development Kit

MAP command
Displays detailed maps of flash memory and RAM.

PROGRAMMER MAP [-F] [-R]

Description If no options are given or both options are given, Map displays both maps.

For each item in memory, the map displays its beginning address, ending address,
total size and name. Numeric values are given in hexadecimal.

The output looks like this:

RIM Wireless Device Command-Line Programmer Version 1.0.0.21
Copyright 2002 Research In Motion Limited
Connecting to device...
Connected
Reading Configuration [######## 100 #######]

Release -4
Hardware: "RIM Handheld for Mobitex (Intel)"

FLASH MAP (available flash = 1984 KB)

 from | to | size | name
=========+=========+=========+=====================
 3fb0000 | 3feffff | 40000 | PAGER957.EXE
---------+---------+---------+---------------------
 3fa1a90 | 3faffff | e570 | Address.dll
 3fa1250 | 3fa1a8f | 840 | AddressAttachment.dl
 3f9b3e0 | 3fa124f | 5e70 | AutoText.dll
 3f9a880 | 3f9b3df | b60 | CoreApi.dll
 3f90bf0 | 3f9a87f | 9c90 | CryptoBlock.dll
 3f873c0 | 3f90bef | 9830 | Database.dll
 3f5c570 | 3f873bf | 2ae50 | Message.dll
 3f45700 | 3f5c56f | 16e70 | ribbon.dll
 3f30260 | 3f456ff | 154a0 | SecureTransport.dll
 3f2e6d0 | 3f3025f | 1b90 | SerialDbAccess.dll
 3f29350 | 3f2e6cf | 5380 | Transport_MDP.dll
 3f0c310 | 3f2934f | 1d040 | UI32.dll
 3f06a20 | 3f0c30f | 58f0 | Calculator.dll
 3ee7390 | 3f06a1f | 1f690 | Calendar.dll
 3ee3c10 | 3ee738f | 3780 | MemoPad.dll
 3ee0c20 | 3ee3c0f | 2ff0 | RimTris.dll
 3eddf30 | 3ee0c1f | 2cf0 | Solitaire.dll
 3ed0000 | 3eddf2f | df30 | [free]
---------+---------+---------+---------------------
 3e00000 | 3ecffff | d0000 | [free]
---------+---------+---------+---------------------

Parameters -F Specifies the flash memory map.

-R Specifies the RAM map.

Loading applications for testing

Developer Guide 23

RAM MAP (available RAM = 560 KB)

 from | to | size | name
=========+=========+=========+=====================
 580000 | 581f23 | 1f24 | Address.dll
 581f24 | 581f5b | 38 | AddressAttachment.dl
 581f5c | 58292b | 9d0 | AutoText.dll
 58292c | 582a8e | 163 | CoreApi.dll
 582a8f | 58425a | 17cc | CryptoBlock.dll
 58425b | 584522 | 2c8 | Database.dll
 584523 | 588d32 | 4810 | Message.dll
 588d33 | 58c0de | 33ac | ribbon.dll
 58c0df | 58cec2 | de4 | SecureTransport.dll
 58cec3 | 58cfc6 | 104 | SerialDbAccess.dll
 58cfc7 | 58eb66 | 1ba0 | Transport_MDP.dll
 58eb67 | 58f62e | ac8 | UI32.dll
 58f62f | 58fcfa | 6cc | Calculator.dll
 58fcfb | 590e0e | 1114 | Calendar.dll
 590e0f | 591096 | 288 | MemoPad.dll
 591097 | 5918a6 | 810 | RimTris.dll
 5918a7 | 59196e | c8 | Solitaire.dll
 59196f | 5f0fff | 5f691 | [free]
 5f1000 | 60bfff | 1b000 | PAGER957.EXE
---------+---------+---------+---------------------

Disconnected

Example The following command shows both maps:

PROGRAMMER MAP

VER command
PROGRAMMER VER

Description The ver command lists applications that are currently loaded on a handheld,
including version information. Version information includes release tags and build
times. The applications are grouped as they are grouped on the handheld.

Example The following command lists the applications on the handheld, including release tags
and build times:

PROGRAMMER VER

WIPE command
Wipes the file system memory or application memory or both.

PROGRAMMER WIPE [-F | -A]

Chapter 2: Loading applications

24 BlackBerry Software Development Kit

Description If no option is specified, both the file system and application are wiped.

Troubleshooting
Most error messages are self-explanatory. The following errors require more
discussion.

Error: Unable to connect to device

An error occurred trying to initiate communications with the handheld. Make sure
that it is connected to the computer properly.

Error: Insufficient flash or RAM

There is not enough flash memory or RAM remaining to load a new application.
Make sure that you have erased any old applications. If you have been erasing and
loading often, you might have fragmented your flash memory space. In this case,
erase all applications and start again. Loading applications as part of the same group
causes them to occupy flash memory more efficiently.

Error: Relocation failed

It was not possible to relocate an application. This typically occurs if the application
environment (pager950.bin) is not specified first in a LOAD command. When loading
or replacing the application environment, the application environment must always
be specified first in the LOAD command.

Error: Bad load

This error occurs when a LOAD is interrupted or performed improperly. This is a
serious error that requires the handheld to be reset and its operating system to be
reloaded. To reset the handheld, insert a small pointed instrument, such as a paper
clip, into the reset hole on the back of the handheld. To reload the operating system,
use the LOAD command. Refer to "LOAD command" on page 20 for more information.

Error: Not all imports resolved

An application is requesting imports from another application that cannot be
exported by the other application. Verify that you are loading applications that
provide the exports that you need.

Parameters -F Specifies that the file system should be wiped.

-A Specifies that the application area should be wiped.

Deploying applications

Developer Guide 25

Deploying applications
The Application Loader, which is part of the BlackBerry Desktop Manager, enables
users to load new applications onto the handheld.

To deploy applications in this manner, you must create an application loader (.alx) file
for each application and then distribute the .alx and .dll files to your users.

For information on using the Application Loader, refer to the Application Loader Online
Help.

Sample .alx files
In a text editor, such as Microsoft Notepad, create a new .alx file for your application.
The .alx file uses extensible markup language (XML) format. This is an example of an
.alx file for one application:

<loader version="1.0">
<application id="com.rim.samples.device.contacts">
<name>Sample Contacts Application</name>
<description>Provides ability to store a list of contacts.
</description>
<version>1.0</version>
<vendor>Research In Motion</vendor>
<copyright>Copyright 1998-2002 Research In Motion</copyright>
<language langid="0x000c">
<name>Application D'Échantillon Pour des Contacts</name>
<description>Enregistre une liste de contacts.</description>
</language>
<fileset Java="1.0">
<directory>samples/contacts</directory>
<files>
net_rim_contacts.dll
net_rim_resource.dll
net_rim_resource__en.dll
net_rim_resource__fr.dll

</files>
</fileset>

</application>
</loader>

This is an example of a .alx file for an application with nested modules:

<loader version="1.0">
<application id="net.rim.sample.contacts">
<name>Sample Contacts Application</name>
<description>Provides the ability to store a list of contacts.

</description>
<version>1.0</version>
<vendor>Research In Motion</vendor>
<copyright>Copyright 1998-2001 Research In Motion</copyright>

Chapter 2: Loading applications

26 BlackBerry Software Development Kit

<language langid="0x000c">
<name>Application D'Échantillon Pour des Contacts</name>
<description>Enregistre une liste de contacts.</description>
</language>
<fileset Java="1.0">
<directory>samples/contacts</directory>
<files>
net_rim_contacts.cod
net_rim_resource.cod
net_rim_resource__en.cod
net_rim_resource__fr.cod

</files>
</fileset>
<application id="net.rim.sample.contacts.mail">
<name>Sample Module for Contacts E-Mail Integration</name>
<description>Provides the ability to access the email
applicaton</description>

<version>1.0</version>
<vendor>Research In Motion</vendor>
<copyright>Copyright 1998-2001 Research In Motion</copyright>
<language langid="0x000c">
<name>Application D'Échantillon</name>
<description>Utiliser l'application de E-mail</description>

</language>
<fileset Java="1.0">
<directory>samples/contacts</directory>
<files>
net_rim_contacts_mail.cod

</files>
</fileset>
</application>

</application>
</loader>

Deploying applications

Developer Guide 27

Format of .alx files
The following table describes each element (tag) and attribute. All elements are
mandatory unless otherwise noted.

Element Attributes Description

loader version The loader element contains one or more application
elements. The version attribute specifies the version of the
Application Loader. The version in this release is 1.0.

application id The application element contains the elements for a single
application.

The application element can also contain additional nested
application elements. Nesting enables you to load all
prerequsite modules when an application it loaded.

The id attribute specifies a unique identifier for the
application. You should use an ID that includes your company
domain, in reverse, for uniqueness (for example,
com.rim.samples.device.contacts).

name — The name element provides a descriptive name for the
application, which appears in the Application Loader. It does
not appear on the handheld.

description — The description element provides a brief description of the
application, which appears in the Application Loader. It does
not appear on the handheld.

version — The version element provides the version number of the
application. This version number appears in the Application
Loader.

vendor — The vendor element provides the name of the company that
created the application. The vendor name appears in the
Application Loader.

copyright — The copyright element provides copyright information,
which appears in the Application Loader.

Chapter 2: Loading applications

28 BlackBerry Software Development Kit

language langid The language tag enables you to specify additional languages
for application information that appears in the Application
Loader when the desktop language is other than the default
language.

You can nest the name, description, version, vendor, and
copyright tags in the language tag. You can specify multiple
language tags, one for each language that you want to support.

The langid attribute specifies the Win32 langid code for the
language to which this information applies. For example, some
Win32 langid codes are: 0x0009 (English), 0x0007 (German),
0x000a (Spanish), 0x000c (French).

fileset model The fileset element includes one directory element and
one files element. It specifies a set of .dll files, in a single
directory, to load onto the handheld. If you need to load files
from more than one directory, you can include one or more
fileset elements in the .alx file.

The model attribute enables you to load different applications
or modules depending on the type of handheld. The model
attribute is optional.

directory — The directory element provides the location of a set of files.
The directory element is optional. If you do not specify a
directory, the files must be in the same location as the .alx
file.

You can specify a directory element for an application or for
each fileset. The directory is specified relative to the location
of the .alx file.

files — The files element provides a list of one or more .dll files, in a
single directory, to load onto the handheld for an application.

Element Attributes Description

Chapter 3
Using the simulator

This section provides information on the following topics:

� About the simulator

� Starting the simulator

� Using the simulator

� Debugging hints

Chapter 3: Using the simulator

30 BlackBerry Software Development Kit

About the simulator
The simulator included with the SDK enables you to test applications without having
to load the .dll files onto an actual handheld.

The simulator supports all of the functionality of the radio modem. You can connect
the simulator to a Radio Access Protocol (RAP) modem through the computer serial
port to enable simulated applications to communicate over the live DataTAC
network.

Starting the simulator
You can start the simulator in one of three ways:

� integrate the simulator with Microsoft Visual Studio

� use the Windows shortcut

� use the command line

Each application is built into a separate .dll file. You load applications into the
simulator by selecting one or more .dll files.

There are two RIM Wireless Handheld simulator programs: Simulator.exe� and
OsLoader.exe.

� Simulator.exe provides a Windows interface and provides consistency between
sessions, because configuration information is stored in the simulator.ini file.

� OsLoader.exe provides a command-line interface and is normally used as the
debug executable in the Microsoft Visual Studio IDE.

For each program, you must specify the platform that you want to simulate and the
applications that you want to load.

� Platform .dll files are in the simulator directory

� Application .dll files are in the dll/datatac and dll/mobitex directories

There are differences between each network simulation, based on the differences
between the networks themselves. Refer to the Radio API Reference Guide for
information such as:

� simulation file protocol

� format of the files that simulate data packets

� limitations of the simulation

� specific behaviors of the simulation

� guidelines for writing a host-side application to simulate the network

Starting the simulator

Developer Guide 31

Running the simulator with Microsoft Visual
Studio
You can set up the project properties for projects in Microsoft Visual C++ 6.0 so that
you can run an application in the RIM Simulator environment during debugging.
Refer to "Setting project properties" on page 14 for more information.

When you debug a project in Visual C++ 6.0, the simulator automatically starts. You
can then run the application in the simulator while using all of the debugging
facilities, such as breakpoints, in Visual C++ 6.0.

Running the simulator in Windows
1. On the Start menu, select Programs > BlackBerry Handheld SDK 2.5 >

BlackBerry Simulator.

Alternatively, in the SDK simulator folder, double-click Simulator.exe.

The RIM OS Simulator window appears:

RIM OS Simulator window

2. On the Configure menu, select the platform that you want to simulate.

If no platforms are listed, click Platforms. In the window that appears, click Add.
In the simulator folder select the appropriate OS .dll file, such as OsPgrDt.dll.

3. On the Control menu, clear the Prompt for options and Prompt for applications
options.

Select these options if you want to set simulator options and select the
applications to load each time you run the simulator.

Note: When you change platforms, remove the memory dump file (extension.dmp) in the
simulator directory. To remove this file, on the Configure menu, click Options. Click the Flash
tab, and then click Erase flash (once).

Chapter 3: Using the simulator

32 BlackBerry Software Development Kit

4. On the Configure menu, click Options. The Simulation Options window
appears.

Refer to the Simulator Online Help for information on options.

5. Click the Applications tab. Beside the Always load these applications field, click
Browse.

6. In the Select Applications window, select the application .dll files to load and
click Open. You can select several applications.

7. After you select applications, click Cancel.

8. On the Control menu, click Start Simulation.

Refer to �Using the simulator� on page 35 for more information.

Starting the simulator from a command prompt
1. Set the PATH environment variable to include the folder for all your application

.dll files. This helps prevent errors due to dependencies between applications.

2. Using a command prompt, go to the SDK tools folder and type:
OSLOADER.EXE [Options] OSXXXXX.dll [DLLs]

The first parameter must be an OS .dll file, such as OsPgrMb.dll. For example:
OSLOADER.EXE OsPgrMb.dll SampleApp.dll

OsPgrMb.dll is the operating system to use and SampleApp.dll is the application
to load into the simulator. Application .dll files must be included in the PATH
environment variable.

Refer to �Simulator options� on page 33 for more information on options.

3. If you did not specify any .dll files at the command prompt, in the Select
Application dialog box, select each .dll file that you want to load and click Open.

After you select the applications you want to load, click Cancel.

Select Applications window

The simulator starts.

Refer to �Using the simulator� on page 35 for more information.

Starting the simulator

Developer Guide 33

Simulator options
The following table summarizes the options for controlling the simulator. Equivalent
command line switches and arguments are also given; all options have an equivalent
switch.

To set the following options, on the Configure menu, click Options. The following
table organizes options according to the tab in the options dialog box.

Tab Option Switch Description

General PIN /RSIM=addr This option specifies addr as the
simulator's address.

Turn off audio /B This option turns off audio.

Flash Total size /Fn This option simulates n KB of flash
memory.

OS and app
sectors

/An This option specifies n 64-KB sectors of
flash memory for OS and application
storage. By default, the previous amount is
preserved unless /E (Erase Flash) is
simultaneously specified. Then a default
amount is used.
This can simulate the result of a
PROGRAMMER ALLOC command.

Filesystem
sectors

/Dn Specifies n 64-KB sectors of flash memory
for file system data storage; by default, the
previous amount of flash memory is
preserved, unless /E (Erase Flash) is
specified.

Erase flash (once) /E Erases flash memory allocation log.

Ports RAP port /Rn Specifies the serial port n for RAP modem.

Serial port /Sn Specifies Windows serial port n in place of
handheld's physical serial port; if no port is
specified, applications cannot open ports.

Applications Default
application
directory

Specifies the directory from which to load
applications; on the command line, this is
the current working directory when the
simulator is invoked.

Alway load these
applications

On the command line, any argument that
does not begin with / is taken as the file
name of an application to load.

Chapter 3: Using the simulator

34 BlackBerry Software Development Kit

To set the following options, click the Control menu.

Advanced /C Disables checking of application .dll files;
by default, the loader checks that the .dll
files are valid and have no external
dependencies, and that each .dll file is
loaded only once

/Mn Sets memory debugging level, where n is
one of:
0—Use only main heap
1—Use private heap and main Windows
heap
2—Use both heaps, with bounds checking
3—Use both heaps, with free() pointer
checking
4—Use both heaps, free() pointer
checking and bounds checking
The default is 4 (highest level).

/N Deletes the flash memory file system
before initialization, instead of resuming
from last run (the default).

/RDIR=dir Stores simulated packets in directory dir.
The default is the current directory; two
simulations must be pointing at the same
directory to exchange packets.

/T[flags] Set or suppresses traps. Valid flags are:
+ (turn on subsequent options)
- (turn off subsequent options)
W (trap when the application writes to
flash)
Y (trap when the application yields
control)
Refer to "Simulating pointer trapping
behavior" on page 41 for more
information.

Option Switch Description

Prompt for applications /Pf Force prompt for more applications.

/Ps Always suppress prompt for more applications.

Using the simulator

Developer Guide 35

Loading applications

Each .dll file is a different application. The .dll files you load depend on which
handheld applications you want to simulate.

For example, a simple application that uses only the functionality of the base API
functions do not depend on other .dll files and can be loaded by itself; however,
applications that are built with the UI Engine API require that the ui32.dll file is also
loaded.

To simulate an application running with the full handheld messaging application,
load all of the .dll files in the directory. You should load the Ribbon and the UI
Engine. You can choose to leave out some applications.

Refer to the specific API Reference Guides for more information on each of these .dll
files.

Stopping the simulation
To stop the simulation, on the Control menu, click Stop simulation.

Exiting the simulator
To exit the simulation, on the File menu, click Exit.

Using the simulator
When you run the simulator, a window appears that displays a picture of the
handheld. This main window contains pictures of a keypad, a trackwheel, and an
LCD. You can operate the keypad and trackwheel from Windows, and the LCD
shows you what would be displayed on the actual handheld.

For information on using the handheld itself, refer to the Handheld User�s Guide. This
section explains the differences between the simulator and the actual handheld.

Note: The sdkradio.dll is not a standard application .cll file for the simulator. It is used when
you want to use your simulator as a Mobitex modem. (Refer to "Using a physical modem" on
page 43 for more information.) Normally you should not load SDKRadio.dll into the
simulator.

Chapter 3: Using the simulator

36 BlackBerry Software Development Kit

RIM Handheld Simulator for Mobitex

Using the keyboard

Press the keys on your computer keyboard or click the keys on the simulator
keyboard to simulate pressing handheld keys. You do not need to press the ALT key
to type numbers and symbols; use the number keys on your computer keyboard.

You can change this input method. On the simulator Keyboard menu, click Pager. In
Pager mode, you can only use the keys on your keyboard that exist on the handheld.
To type numbers and symbols, press CTRL on your computer keyboard and its
associated letter on the handheld.

Using the ESCAPE key

Handheld users press ESC to close the current menu or screen and return to the
previous screen.

Press ESC on your computer keyboard to simulate pressing ESC on the handheld.

Using the trackwheel

The trackwheel is the handheld user�s primary input mechanism. The trackwheel
enables users to navigate, view, and select items on each screen. Users roll the
trackwheel to scroll through menu items or text, and click the trackwheel to select
applications or menu options.

When the simulator window is active, you can roll the wheel button on your mouse to
simulate rolling the trackwheel, and click the wheel button to simulate clicking the
trackwheel.

If your mouse does not have a wheel button, use the UP ARROW and DOWN
ARROW keys on your keyboard to simulate rolling the trackwheel, and press the
LEFT ARROW or RIGHT ARROW key to simulate clicking the trackwheel.

Using the simulator

Developer Guide 37

Enabling backlighting

On the pager-sized handheld, press ALT three times successively to turn on the
backlighting; the background of the LCD turns blue.

On the palm-sized handheld, press the silver key.

The backlighting will stay on until an idle period of about ten seconds is detected.

Setting LCD size

The LCD size can be toggled between full size (with correct aspect ratios), and actual
size. To change the size of the LCD on your simulator, on the Display menu, click
Change size.

Simulating battery conditions
The radio modem simulator enables you to simulate various battery conditions of the
radio modem, for applications in which the RIM 802D Radio Modem is
battery-powered. On the Simulation menu, select a battery condition: Good battery,
Low battery, No battery.

Simulation menu

Simulating radio conditions
To display the Radio Simulation control panel, on the Simulation menu, click Show
Radio Simulation Control Panel. The panel is automatically displayed if the /RSIM or
/RDIR command line options are used.

Using the control panel, you can simulate various coverage conditions. This control
panel is only useful when you are using the file system to simulate the radio network.

Note the following differences depending on the network being simulated:

� The DataTAC simulation refers to data packets as SDUs, while the Mobitex
simulation refers to data packets as MPAKs.

Note: Use actual size to determine how readable a display screen will be on the actual
handheld.

Chapter 3: Using the simulator

38 BlackBerry Software Development Kit

� The DataTAC simulation refers to the handheld identification number as an LLI,
while the Mobitex simulation refers to the handheld identification number as the
MAN.

Radio Simulation Control Panel

The controls are in two groups: simulation of packet reception and simulation of
packet transmission.

In these descriptions, packet stands for the network-specific packet name.

MAN/LLI number

The MAN number or LLI number field indicates which MAN or LLI number the
modem is currently using. Only one simulation can exist for each identifier. At
startup, the simulator verifies that no other simulation is running with that MAN or
LLI number.

Simulation Directory

The Simulation Directory field indicates which directory is used to simulate the
network. All packets are communicated across the network using this directory. Two
simulators can communicate with each other if they point to the same directory.

MPAK/SDU reception

The MPAK Reception or SDU Reception section enables you to simulate network
coverage conditions and shows information on received packets.

When you select Out of coverage, the modem is out of network contact, and cannot
send or receive SDUs.

When you select In coverage, you can use the slide bar to control the received signal
strength indicator (RSSI) that is reported to applications.

Using the simulator

Developer Guide 39

The signal strength varies from -120 dBm to -50 dBm (dBm is decibels with respect to
milliwatts). A signal of -120 dBm is extremely weak, and the modem typically loses
network coverage before reaching this number. A signal of -50 dBm is stronger than is
likely on the actual network.

Check for MPAKs/SDUs now

Click the Check for SDUs now or Check for MPAKs now button for the simulator to
look for packets immediately. This process is useful in the following situations.

� to increase the frequency with which the simulator checks for packets (by default,
the simulator checks the hard drive for packets once every 10 seconds to simulate
delays in sending unsolicited packets to a particular modem)

� to increase the speed of simulated retries, so that packets that are sent to a modem
that is out of network coverage are returned as undeliverable sooner

Active status

The Active Status field displays one of the following states:

Received MPAKs/SDUs

The Received MPAKs or Received SDUs field displays the number of packets that
have been received from the simulated network.

State Description

Radio Off The radio is turned off.

Turning Off The radio is in the process of turning off.

Stop Reception Radio reception is stopped (RadioStopReception has been
called).

Active The modem is in network coverage on the network.

Checking... The radio is checking for SDUs at 10-second intervals, or Check for
packets now was clicked.

Checking for 10 sec… The radio is checking continuously because a packet was recently
sent or received.

Out of coverage The modem is out of network coverage.

Chapter 3: Using the simulator

40 BlackBerry Software Development Kit

MPAK/SDU transmission

The MPAK Transmission or SDU Transmission section enables you to control the
simulated transmission of packets and shows information on sent packets.

All transmits succeed

When you select this option, every packet submitted for transmission is transmitted
successfully to the network. On an actual network, under good network coverage
conditions, almost all packets are sent successfully.

Prompt for Tx success

When you select this option, each time that an packet submitted for transmission, a
dialog box appears prompting the user to select whether or not the packet will be
transmitted successfully. The packet is pending in the radio until the user selects Yes
or No.

This mode is useful for simulating very long transmission delays. On an actual
network, an packet can be pending in the modem for tens of seconds.

Random success

Using the slide bar, you can select the probability of a particular packet being sent
successfully to the network. The delay for successful SDUs is about 1.5 seconds, while
the delay for unsuccessful packets is 3 seconds; unsuccessful transmission attempts
typically take longer than successful ones.

Transmit status

The Transmit Status field indicates the status of the last or current packet that was
submitted for transmission. This packet can be in one of the following states:

Simulating serial I/O
The simulator can use one or two computer serial ports to simulate the handheld
serial ports. To enable this option from the command prompt, specify the /S option.
To enable this option with the Windows simulator, on the Configure menu, click
Options and then click the Ports tab.

Refer to "Simulator options" on page 33 for more information.

State Description

SDU Pending The modem is currently attempting to send a submitted SDU.

Transmit Done The last SDU was sent to the network successfully.

Transmit Failed The last SDU failed to reach the network.

Using the simulator

Developer Guide 41

If this option is not enabled, or the serial port is not available at startup, you cannot
open or use the serial ports from applications that are running on the simulator.

If you want to simulate that the handheld is connected to a computer, you must
connect the computer serial port to another serial port using a null modem cable.

If you are using the simulator to test connectivity with another RIM handheld
application that is running on the same computer, you must configure the software to
use different physical serial ports and link the serial ports using a null modem cable.

Simulating pointer trapping behavior
The log file system and memory model used by the RIM Wireless Handheld means
that pointers into flash memory might become invalid after an application writes to
the file system or yields to another process. Refer to "Memory-mapped file access" on
page 72 for more information.

The simulator simulates this behavior by occasionally moving the simulated file
system; the simulator then maps the old location as invalid memory. (The pointer is
�stale.�) References to used file system pointers that should have been reloaded will
result in page faults. (This behavior is useful in debugging.)

The stale pointer trapping behavior is controlled by the /T option. You can specify this
option on the command line, or add it to the simulator options. On the Configure
menu, click Options. Click the Advanced tab. In the Extra options fields, add the /T
option.

The /T option can be followed by these symbols:

By default, both trap options are turned on.

For example, /TW-Y enables a trap on flash memory write and disables the trap on
yield.

Flag Meaning

+ Turn subsequent options on

- Turn subsequent options off

W Trap on the application writes to flash memory

Y Trap when the application yields control

Chapter 3: Using the simulator

42 BlackBerry Software Development Kit

Flash memory simulation files

To better simulate flash memory, the RIM Wireless Handheld simulator loads the
flash memory contents from a file on startup and saves them to the file on exit. The
state of the simulated flash memory is preserved in a file in the working directory
named OsXxxYy.dmp, where Xxx is one of Pgr (pager), HH (handheld), or OEM, and Yy is
one of Mb (Mobitex) or Dt (DataTAC).

When the RIM Wireless Handheld simulator starts, it determines the simulated flash
memory size. (The size can be specified on the options dialog or using the /F
command line option; the default size depends on the handheld being simulated.)

The simulator then checks the current directory for a file named OsXxxYy.dmp (where
XxxYy corresponds to the current simulation platform). If the file exists, its size must
be less than or equal to the simulated flash memory size, or the simulator will report
an error and abort. If the file does not exist, the RIM Wireless Handheld simulator will
create it, and its size is equal to the simulated flash memory size.

Regardless of whether the .dmp file existed at startup, the RIM Wireless Handheld
simulator always saves the simulated flash memory contents on exit.

If the .dmp file is smaller than the flash memory size, it is extended with 0xFF�s up to
the flash memory size. This invalidates any flash memory allocation information
present in the file. This facility is provided for use with old .dmp files only and should
be avoided in normal operation.

Design your algorithms to minimize the impact of the flash memory file system on
their performance. The performance of your algorithms will depend on the file
system. Therefore, you might have to alter your design so that it is compatible with
the handheld�s file system.

Flash memory allocation

The available flash memory (either simulated or real) is divided into four areas:

� file system data area

� unused area

� OS and application code area

� fixed use area

Areas are allocated by writing an entry to a flash memory allocation log, which is a
special data structure stored within the fixed use area.

A new entry is added to the log whenever one or both of the /d or /a command line
options are specified. When all of the available log entries have been used, the RIM
Wireless Handheld simulator does not allow any more entries to be written and the
log is erased.

If the simulator finds no valid log entry in the dmp file, a default flash memory
allocation is used. To erase the flash memory allocation log, on the Flash options tab,
click Erase flash (once) or use the /E command line option.

Using the simulator

Developer Guide 43

Simulating the modem
To model transactions over a radio network, you must provide a modem/network.
You can use either:

� a physical modem (a RAP modem or, on Mobitex networks, the RIM Wireless
Handheld)

When a data packet is sent by an application, the packet is sent to the physical
modem through the serial port. Packets that are received by the physical modem,
as well as status information, are sent through the serial port to the simulator that
is running on the computer, and passed on to the applications.

You must have a RAP modem (or RIM Wireless Handheld) with a valid
subscription and you must operate in an area that has radio coverage.

� the file system

To send a data packet, the simulator creates a file whose name indicates the
destination address. Conversely, the simulator checks for the presence of files
whose names indicate that they contain data addressed to the simulator.

This is the default modem method used; it enables you to test the
communications functionality of an application without actually connecting to a
radio network.

Using a physical modem
When simulating the radio network using a RAP modem or the RIM Wireless
Handheld, the RAP modem becomes the simulator�s radio modem.

The simulator is able to communicate with a variety of modems, including all RIM
modem products for your network.

Limitations

The applications are essentially dealing with a live radio network.

� You cannot simulate different coverage situations in software; you are limited by
what the modem is actually experiencing. To simulate different coverage
situations, change the position of the antenna or obstruct the antenna's coverage.

� The dialog box for manually controlling radio coverage situations is unavailable
when running the simulator with a RAP modem, because its behavior is
determined by what the actual modem experiences on the live network.

Options for using a RAP modem

You must set the number of the computer serial port connected to the RAP modem.
From the command line, add the /Rn option, where n is the port number. From the
simulator, on the Configure menu, click Options and click the Ports tab; then set the
Serial communications field to the appropriate port.

Chapter 3: Using the simulator

44 BlackBerry Software Development Kit

Using the handheld as the modem (Mobitex only)

The RIM Wireless Handheld is an integrated embedded system and radio modem.
The radio functionality of the wireless handheld is not normally available through a
serial connection.

To allow the RIM Wireless Handheld simulator to communicate with the handheld,
load SDKRadio.dll (located in the device\mobitex folder) onto the handheld to
enable it to communicate radio information over the serial port. You can load
SDKRadio.dll with the programmer.exe utility by typing:

PROGRAMMER LOAD ..\device\mobitex\SDKRadio.DLL

SDKRadio.dll automatically detects when the simulator is attempting to contact the
handheld, and opens the COM port for communication. When SDKRadio.dll is not
connected to the simulator, it does nothing. It can coexist with your regular
applications on the handheld without harmful effects.

Using the file system
This simulator offers the follow advantages over using the real network:

� no external hardware is required

� no network account is required

� easy to create coverage situations

� possible to monitor what is sent without the need for extra tools

� easy to write programs to send and receive data packets as a host side

The Radio simulation control panel dialog box is available when using the file
system to simulate the network. Use it to set coverage conditions.

For information specific to your network, such as the default simulation environment,
refer to the Radio API Reference Guide.

Options

Unless you specify otherwise, the simulator stores packets in the current directory,
and the Radio simulation control panel dialog box does not appear on startup.

You can change the address of the handheld to simulate and the directory in which to
store the data packets. Refer to "Simulator options" on page 33 for more information.

Note: The handheld is not designed as a high-capacity modem. After sending large amounts of
data, the rate of packet delivery is reduced to save battery life. Sending large amounts of traffic
with the handheld can shorten its battery life.

Debugging hints

Developer Guide 45

Simulating email

Sending and receiving email through the message.dll requires a service book entry;
the only way to get a service book entry onto the simulated handheld is to register
with RIM server software. In turn, this requires a handheld with an active account.

The easiest way to register your simulated handheld is to use a memory dump from
an active handheld of the appropriate type; use the programmer dump command.

On Mobitex systems, you can use your handheld as a modem; you can then register
the simulated handheld with the RIM server software.

If your application uses the Radio API calls directly, you do not need to register the
simulated handheld; registration with the server is only required if your application
uses the calls from the Messaging API.

C:\dev\app1.dll app2.dll.

Debugging hints
The following tips will help you debug applications using the simulator, and well as
using the handheld.

� When the handheld fails and requests a reset, you can often get additional
information by typing dbug. This displays the contents of different registers.

� You might be able to get additional information on a reset request by typing info.
If the failure was caused by an unresolved OS call, this command displays the
name of the call.

� For some reset requests, pressing R causes a reset.

� You can force a reset request by pressing ALT + SHIFT + BACKSPACE.

� The RimDebugPrintf() call writes to the simulator display but has no effect on the
actual handheld.

Chapter 3: Using the simulator

46 BlackBerry Software Development Kit

Chapter 4
Programming
overview

This section provides information on the following topics:

� Understanding the application environment

� Operating system

� API hierarchy

� Application development steps

Chapter 4: Programming overview

48 BlackBerry Software Development Kit

Understanding the application environment
The RIM Wireless Handheld has its own operating system. Many of the features of
the operating system, such as the use of flash memory instead of a traditional file
system, are based on the requirements of a portable wireless device.

When developing applications for the RIM Wireless Handheld, you should be aware
of the following items:

� The RIM Wireless Handheld uses a multitasking operating system, with a
co-operative scheduler. Each task must be able to yield so that other tasks can use
the CPU. Tasks communicate using MESSAGE structures.

� Tasks and threads are used to run applications.

� The system uses two types of memory, flash memory and RAM. Applications use
file system handles to access memory.

� Users interact with handheld applications using the trackwheel and keyboard;
users select applications from the handheld Home screen (also called the ribbon).

� Most applications can send email using the Messaging API. If your application
needs access to the underlying wireless network, it can use the Radio API.

Design considerations
When designing and writing applications for the RIM Wireless Handheld, you should
keep in the mind the following considerations:

� the trackwheel is the primary input mechanism

� small memory and stack (less than 10 KB)

� limited virtual memory

� co-operative scheduling (each process must yield control appropriately)

� small screen

Operating system
This section provides an overview of operating system services.

RIM co-operative scheduler
The handheld�s operating system (OS) uses a co-operative multitasking model. Slicing
or pre-emption cannot occur between applications. This design removes the need for
mutual exclusion mechanisms and semaphores; however, it makes the developer
responsible for yielding to other applications during long operations.

Refer to the Operating System API Reference Guide for more information.

Operating system

Developer Guide 49

Tasks and threads
Each application is created with a single executable thread; new threads can be
created and destroyed dynamically.

To create a new task, perform the following tasks:

� Define a PagerMain() function.

� Choose an application name.

� Specify an application stack size.

Each PagerMain() function is called during the initialization process and is used to
construct and initialize objects that the application requires. Refer to "Writing an
application" on page 55 for more information.

Task yielding
Because the operating system uses a co-operative multitasking model, the
PagerMain() function (and all other code) must include a task yield function call to
allow other tasks to make use of the CPU. The application can be restarted in several
ways:

� in response to a MESSAGE posted by a handheld system, such as the real time clock

� in response to a MESSAGE posted to the task by another task

� in response the user selecting an icon on the Home screen

� in response to a user selection through the Options List

Refer to "Inter-process communication" on page 50 for more information.

To keep track of task yielding, there are two OS tasks that keep watch on threads:

� Applications watch

The applications watch task tracks applications. It triggers a reset (device error 95)
when an application runs ten seconds without yielding to another task.

Each time an application spends more than one second without yielding, this is
logged. To see the log, press ALT + SHIFT + B and select the Watchpuppy line.

� System watch

The system watch task monitors the system, and avoids two tasks trading off an
application to the exclusion of the rest of the system. It triggers a reset (device
error 96) when the system has logged five minutes of system idle time.

Chapter 4: Programming overview

50 BlackBerry Software Development Kit

Inter-process communication
The OS enables inter-task communication through posting and receiving MESSAGEs.
The RimPostMessage() and RimSendMessage() functions allow a task or system
handheld to send a MESSAGE to a specific task or tasks. The RimGetMessage() function
enables a task to yield control of the CPU until a MESSAGE is posted for it.

The PagerMain() function should include code to construct and initialize the
necessary application objects, followed by a message loop: an infinite loop containing
a RimGetMessage() function and code to call the appropriate application function for
each expected RIM MESSAGE.

If you are using the UI, a message loop function is included (Process()).

Refer to the Operating System API Reference Guide for more information.

Memory use
The handheld contains two types of memory: RAM and flash memory is volatile and
can be accessed directly. Flash memory is non-volatile and can be accessed either
directly or indirectly through calls to a file system.

On the handheld, code and data are stored in flash. Flash memory can be read as if it
were RAM, but with the following two restrictions:

� Flash memory is read-only memory.

� The data might move if the application code yields control of the CPU (by calling
either RimTaskYield(…) or RimGetMessage(…), by making a file system call, or by
calling another application that does one of these things).

Writing to flash memory is relatively slow and requires using special OS commands.

The Database API members are optimized to make the most efficient use of RAM and
flash memory. Ideally, you need not be concerned with how the data is stored. File
system handles can be assumed to always point to the appropriate data.

Wireless communications
The BlackBerry SDK provides two different sets of APIs to provide wireless service to
applications on the RIM Wireless Handheld

Operating system

Developer Guide 51

RIM API Purpose

Messaging API The Messaging API enables applications to send email messages or
other messages that make use of the services offered by the network
provider. The Messaging API is independent of the underlying network.
Email is always provided as a service.

Radio API The Radio API provides access to the network at the level of data
packets. There are two Radio APIs, one for Mobitex networks and one for
DataTAC networks. Because the Radio API is a simplified interface to the
network, they have strong similarities.

Chapter 4: Programming overview

52 BlackBerry Software Development Kit

User interface
From a hardware perspective, the user interface consists of the screen (LCD),
trackwheel, and keyboard. To receive input or display output, an application must
become the foreground task.

� Display data on the LCD using OS-level calls or using higher-level objects defined
by the UI Engine.

� Whenever a key is pressed, the keyboard handler posts a MESSAGE. The
application can acquire the information by getting that MESSAGE through
RimGetMessage().

There are two ways for a user to activate an application:

� Select that application�s icon on the main screen (ribbon).

To create an icon on the ribbon, register a name and a bitmap using the
RibbonRegisterApplication() function. The DEVICE_RIBBON will then post a
MESSAGE to the application�s task that can be used to invoke the appropriate
application code.

� Select the application in the Options List (ALT + SHIFT + S).

Create an entry in the Options List by registering a name and a callback function
using the OptionsEntry() function. This function calls the callback function that
has access to the LCD (has the foreground) through the Options thread.

Note: Use the OptionsEntry() approach only to make changes of a limited nature, such as
changing the application parameter.

API hierarchy

Developer Guide 53

API hierarchy
The following diagram illustrates the hierarchy of the BlackBerry SDK.

API hierarchy

Chapter 4: Programming overview

54 BlackBerry Software Development Kit

Application development steps
The following steps describe the process for developing an application for the RIM
Wireless Handheld.

1. Design your application.

2. In Microsoft Visual Studio, use the application wizard to set up projects for your
application and its resources.

3. Edit source files using Microsoft Visual Studio.

4. Build your application as a Windows .dll file.

5. Test your application using the handheld simulator.

6. Use Microsoft Visual Studio debugging tools to find and correct any problems.

7. Load the application onto an actual handheld for final testing. Refer to "Loading
applications for testing" on page 16 for more information.

8. Distribute the application .dll files with application loader (.alx) files for users to
load onto their handhelds using the BlackBerry Desktop Manager. Refer to
"Deploying applications" on page 25 for more information.

Application development process

Note: Although the application is compiled as a Windows .dll file, it must not call any
Windows-specific code, because it will not run on a Windows system.

Chapter 5
Writing an
application

This section provides information on the following topics:

� Basic program structure

� Defining an entry point

� Registering the application

� Entering the message loop

� Adding the application to the Home screen

� Setting up a basic program structure

� Minimizing memory usage

� Defining version information

� Other example programs

Chapter 5: Writing an application

56 BlackBerry Software Development Kit

Basic program structure
The basic program structure consists of an infinite loop that receives messages from
the operating system, and code to process those messages.

For every application, you must perform the following tasks:

� create an entry point named PagerMain()

� register the application, using a version string and a stack size

� set up a continuous loop that handles system messages

Defining an entry point
Each handheld application must have an entry point function named PagerMain with
the following prototype:

void PagerMain()

The PagerMain() function has the format shown in the example on the following
page. The following guidelines will help you create the PagerMain() function:

� Begin the PagerMain() function with the construction of any permanent objects
required by the application. You should avoid accessing objects in other .dll files
because, until the PagerMain() functions in these .dll files have had a chance to
run, the construction of these objects might not have occurred.

� After this local initialization phase, call RimTaskYield() to allow the PagerMain()
functions of other tasks to run.

� After RimTaskYield() is called, you can expect that the other tasks� permanent
objects have been created. Now call those functions that make the PagerMain()
function known to other tasks (for example, RibbonRegisterApplication()).

� The function can display any user interface elements that are visible to the user if
the task is brought to the foreground.

� Finally, if your application needs to respond to MESSAGEs posted by other tasks or
by the system (such as the real-time clock), include an infinite loop containing a
RimGetMessage(…). The RimGetMessage(…) task yields control of the CPU until a
MESSAGE is posted for the task.

Refer to the Operating System API Reference Guide for more information.

Program execution life cycle
For C++ programs, global constructors are executed first after a reset. After that,
PagerMain() is the first part of the program to be executed.

Note: Try not to use global object constructors; the objects are permanent and take up valuable
resources, resources that could be used by other applications.

Registering the application

Developer Guide 57

PagerMain() is called only at startup after a program loads, the handheld resets, or
the system stops responding. Turning the handheld on and off does not restart the
application at PagerMain(). Instead, applications are notified that the pager is
turning off by a message sent to them. Because the CPU state, flash memory, and LCD
states are preserved when the handheld is turned off, most applications can safely
ignore the messages indicating that the handheld is turning off or on.

PagerMain() creates and handles the main screen of the program, and effectively
enters an infinite loop. The RIM Wireless Handheld assumes all applications to exist.
As such, if an application stops itself, either by calling RimTerminateThread(), or by
returning from PagerMain(), the user cannot restart the application directly.

Applications reside continuously in flash memory. Any RAM used by the application
is thus also always used. Statically allocated memory cannot be reclaimed by other
applications, and dynamically allocated memory (using malloc() or C++ operator
new) can only be re-used by other applications if it is relinquished.

Registering the application
BlackBerry applications must have two variables that are defined globally:

� version string

� stack size

Version string
The version string is used to register the application with the task switcher in the
operating system. The name appears when the task switcher is run. The definition
should be:

char VersionPtr[] = "My Application";

Stack size
The stack size is used by the system when it creates the initial thread for the
application. The value should be sized according to the needs of your application,
although the smaller it is, the better. The variable is AppStackSize:

int AppStackSize = 5000;

The RimStackUsage() function provides information on your application�s stack
usage; it records the highest stack usage since the last call.

When generating a new thread, the RimCreateThread() function also enables you to
specify a stack size.

Chapter 5: Writing an application

58 BlackBerry Software Development Kit

Entering the message loop
If your application uses the UI engine, you can avoid writing a loop by calling
Screen::Process.

If you need to write a message loop, the typical structure for this loop is a
non-terminating loop with a switch statement to delegate message processing to
different functions.

The following example demonstrates how to write this type of switch statement.

#include "Pager.h"
void PagerMain(void)
{

MESSAGE msg;
// perform initialization
for (;;) {

RimGetMessage(&msg); // respond to events
switch(msg.Device) {
case DEVICE_SYSTEM: // handle SYSTEM messages

break;
case DEVICE_TIMER: // handle TIMER messages

break;
case DEVICE_KEYPAD: // handle KEYPAD messages

break;
}

}
}

You can call RimGetMessage from anywhere in the code. For complex programs, every
screen of your program should have its own message loop. Messages that do not
pertain to the screen, such as radio messages, should be handled by calling a message
handler, or even a separate thread.

Adding the application to the Home screen

Developer Guide 59

Adding the application to the Home screen
Users select handheld applications by selecting icons on the Home screen, which is
also called the ribbon.

1. Add #include <ribbon.h>.

2. Call the RibbonRegisterApplication() function at the beginning of PagerMain(),
before the program enters the message loop. Refer to the Ribbon and Options API
Reference Guide for more information.

3. Your application can return to the ribbon by calling RibbonShowRibbon().

Be sure to link with ribbon.lib.

Example: PagerMain function

This is a more complicated example of a PagerMain() function that includes task
yielding and makes use of items from other .dll files.

char VersionPtr[] = "Example Application";
int AppStackSize = 5000;

// Function identifying task to the operating system
static void set_task_pid(void)
{

PID pid;
pid.Name = "Example Application";
pid.EnableForeground = true;
pid.Icon = NULL;
RimSetPID(&pid);

}

// Function that creates the main thread
void PagerMain(void)
{

set_task_pid();

// Yield to let other applications initialize
RimTaskYield();

// Register the application with the Ribbon so an
// icon is shown on the main screen
RibbonRegisterApplication("Database Sample",&bitmapSample, 0, 0);

// Initialization complete: set up LCD and enter message loop
list_screen.Display();

}

Chapter 5: Writing an application

60 BlackBerry Software Development Kit

Setting up a basic program structure
1. Implement a message loop.

Any application that runs on the handheld must handle messages from the
operating system that notify the application of events, such as key presses and
radio events. The most efficient way to do this is using a message loop.

The basic structure of the message loop is as follows:

for (; ;) {
//waits until a message is given to the application by the OS
RimGetMessage (&message);
//processes message

}

2. To display data on the handheld LCD screen, an application must first become
the foreground task.

In this example, the application should be brought to the foreground if the user
activates the application by selecting an icon on the main screen. When the user
selects the icon, the operating system sends a MESSAGE to the application from the
RIBBON device, with the event set to RIBBON_GRAB_FOREGROUND. If a RIBBON
message is received, you call RimGetCurrentTaskID() for the current task handle.
You then bring the application to the foreground using RimRequestForeground().

if(message.Device == DEVICE_RIBBON) {
if(message.Event == RIBBON_GRAB_FOREGROUND) {

// Bring application to the foreground so it can use the LCD
RimRequestForeground(RimGetCurrentTaskID());

}
}

3. If the user presses a key, the operating system sends a MESSAGE to the application
from the KEYPAD event. If a KEYPAD message is received, you pass the MESSAGE to
the UI Engine, which returns a result code:

if(message.Device == DEVICE_KEYPAD) {
// Let the UI process the message
result = m_ui_engine.HandleInput(message);
//Process UI Engine result

}

MESSAGEs resulting from a key being pressed on the keyboard are sent only to the
foreground task.

Setting up a basic program structure

Developer Guide 61

4. If the UI Engine returns CLICKED, the application should display a menu. If the UI
Engine returns UNHANDLED, the user might have pressed BACKSPACE, in which
case the application returns to the Home screen (RIBBON).

if(result == CLICKED) {
// Set up, display, and handle menu result

} if(result == UNHANDLED) {
// Check for the backspace key.
// If the user pressed backspace, return to Home screen
if(message.Event == KEY_DOWN && message.SubMsg == KEY_BACKSPACE)
{

RibbonShowRibbon();
}

}

Control flow
A typical application that is running on the RIM Wireless Handheld only has a small
LCD, and can only deal with the user doing one thing at time. Because of this,
programs can be structured such that any one piece of code only deals with one type
of �screen.� When a new screen is entered, it can be implemented as a call to the
routine that is handling that screen, and when that screen is exited, the call returns to
the previous screen.

In the sample program filedemo.c (in OS_samples\src), the thread of execution
reflects the actual sequence of operations done on the handheld. When the user clicks
on the trackwheel, the application calls a routine that contains a message loop to deal
with trackwheel input, while the main window does nothing. After the user has made
a selection, such as Add, a function is invoked, with its own message loop, to compose
a new piece of text.

You might want to deal with different types of input at different times. If
RimGetMessage() is called from multiple places, as is done in the sample program,
you should place all the message processing that is the same for all functions into a
function, so that it can be called conveniently from all the places from which
RimGetMessage() is called.

In the case of the filedemo.c program, only user input is important, so other
messages are ignored.

A sample application is shown below. A more elaborate version of hello.c is
included with the SDK in the OS_Samples\src folder.

Chapter 5: Writing an application

62 BlackBerry Software Development Kit

Example: hello.c
#include <Pager.h>
#include <ribbon.h>

char VersionPtr[] = "Hello World";
int AppStackSize = 1000;

// Function that creates the main thread
void
PagerMain(void)
{

// For holding system messages
MESSAGE msg;
// Initialize:
// Yield to let other applications initialize
RimTaskYield();

// Register the application with the ribbon
RibbonRegisterApplication("Hello &World", NULL, 0, 0);

// Enter message loop
for (;;) {

RimGetMessage(&msg);
// respond to events
switch(msg.Device) {

// handle KEYPAD messages
case DEVICE_KEYPAD:

// If any key is pressed, return to ribbon
RibbonShowRibbon();
break;

// handle RIBBON messages
case DEVICE_RIBBON:

if (msg.Event == RIBBON_GRAB_FOREGROUND) {
// Bring this application to the foreground
RimRequestForeground(RimGetCurrentTaskID());
// Clear screen
LcdClearDisplay();
// Write string
LcdPutStringXY(0,0, “Hello, world!”, -1,

TEXT_NORMAL);
}
break;

}
}

}

Minimizing memory usage

Developer Guide 63

Minimizing memory usage
The RIM Wireless Handheld is a handheld with limited memory; minimizing
memory requirements is an important consideration in designing your applications.

The handheld operating system dynamically allocates stack pages for the
applications, which makes it possible to run more applications, but the handheld is
now sensitive to the amount of available SRAM and the fragmentation of that SRAM.

Follow these guidelines to minimize your application�s memory usage.

Minimize the amount of SRAM
You can determine how much statically-allocated SRAM an application uses with the
programmer dir command. Follow these guidelines to minimize the use of SRAM:

� Minimize dynamic memory allocation through new and RimMalloc.

� Do not allocate many small objects (less than 50 bytes); object overhead is about
12 bytes.

� Try to keep objects below 1 KB in size; use 100 to 1000 bytes each as a guideline.

� Minimize the number and size of static and global variables.

� Verify that any large constant strings, tables, bitmaps, fonts, and other arrays are
declared const so that they remain in flash memory.

Free dynamic memory
An application in the background should free as much of its dynamic memory as
possible:

� Write long-term state information to flash memory and free as many allocated
objects as possible

� If possible, allocate long-term state in a small statically allocated area (that
probably contains references to flash memory)

Follow these steps to test for dynamic memory allocation:

1. Check the free memory.

2. Start the application and perform some tasks.

3. Exit to the ribbon.

4. Recheck the memory.

Ideally no memory loss should occur over an application invocation.

Note: Running this test on RIM applications might show significant loss the first time that they
are entered, because RIM has deferred the allocation of some system buffers until certain
applications start.

Chapter 5: Writing an application

64 BlackBerry Software Development Kit

Minimize stack space
Minimize the amount of required stack space:

� Avoid placing large objects on the stack so the stack stays below 1 KB.

� If possible, register for Ribbon reactivation and actually exit the thread.

� Minimize the number of threads used by an application.

Defining version information
The Application Loader that is included with the BlackBerry Desktop Manager looks
for version information in the executable code. This version information is inserted by
defining two macros in your source module: RIM_DEFINE_VERSION and
RIM_DEFINE_DEPENDENCY.

In addition, VERSIONINFO information is used to determine whether an application file
is more recent than the installed versions of the file.

The Application Loader uses version information in the following ways:

1. When you attempt to load any applications onto your RIM Wireless Handheld,
the loader first attempts to resolve any links between applications; if this fails, the
loading process fails.

2. The Application Loader queries the handheld for the list of applications already
installed, and their version numbers; it already has a list of applications (and their
versions) available on the desktop. The version numbers used here are those
stored in the Windows VERSIONINFO number, such as 2.0.3.1. For applications
without a version number, the loader generates a checksum. The following rules
are used to determine the most recent versions:

� If both files have version numbers, the higher arithmetic value is the most
recent.

� If one file has a version number and the other has a checksum, the one with
version information is the most recent.

� If neither file has a version number and the checksums are different, the
version on the desktop is the most recent.

If the version numbers are identical, or neither file has a version quad and the
checksums are identical, the files are considered the same and the application is
not updated.

3. The Application Loader uses the version information from the
RIM_DEFINE_VERSION and RIM_DEFINE_DEPENDENCY macros to verify that the
interfaces in the applications are compatible.

If all steps succeed, the new applications are loaded.

Refer to the Microsoft Visual Studio documentation for information on creating a
resource file; only the VERSIONINFO field is important for version information.

Defining version information

Developer Guide 65

RIM_DEFINE_VERSION

The RIM_DEFINE_VERSION macro has the following syntax:

RIM_DEFINE_VERSION(name, major, minor, patch, build, min_compat_maj,
min_compat_min)

RIM_DEFINE_DEPENDENCY

The RIM_DEFINE_DEPENDENCY macro has the following syntax:

RIM_DEFINE_DEPENDENCY(name, min_compat_maj, min_compat_min)

All modules must have the same dependency. That is, it is acceptable to define these
lines in two different modules:

RIM_DEFINE_DEPENDENCY(Bar, 1, 5)
RIM_DEFINE_DEPENDENCY(Bar, 1, 5)

If there are different definitions, you cannot predict which definition is used by the
loader.

You should use macros in a block in the principle public interface header; for
example:

#ifdef IMPLEMENTING_FOO
RIM_DEFINE_VERSION(APP_NAME, APP_MAJ, APP_MIN,\

APP_PATCH, APP_BUILD, APP_MIN_COMPAT_MAJ, APP_MIN_COMPAT_MIN)

Parameters name A string that identifies the module.

major Major release number.

minor Minor release number.

patch Patch number.

build Build number.

min_compat_maj Earliest major release that is binary compatible with this
module.

min_compat_min Earliest minor release that is binary compatible with this
module.

Parameters name A string that identifies the module.

min_compat_maj Earliest major release that is binary compatible with this
module.

min_compat_min Earliest minor release that is binary compatible with this
module.

Chapter 5: Writing an application

66 BlackBerry Software Development Kit

#else
RIM_DEFINE_DEPENDENCY(APP_NAME, APP_MIN_COMPAT_MAJ,\

APP_MIN_COMPAT_MIN)
#endif

Refer to the autotext.h header file for an example.

Other example programs
The SDK includes several sample applications in the SDK App_samples and
OS_Samples folders. In particular, you might want to look at the file sample program
in the OS_Samples directory, which consists of filedemo.c, editfunc.c, and
popupmenu.c. The program demonstrates how to use the file system and how to
provide a graphical user interface for user input.

Chapter 6
Operating system
services

This section provides information on the following topics:

� Inter-process communication

� File system services

Refer to the Operating System API Reference Guide for additional
information.

Chapter 6: Operating system services

68 BlackBerry Software Development Kit

Inter-process communication
Any system or application message is in the form of a MESSAGE structure (defined in
the header file Rim.h). Refer to the Operating System API Reference Guide for more
information.

Message passing
Applications on the RIM Wireless Handheld receive external notification through
events that are sent to the applications. After an application processes an event, it calls
the RimGetMessage() function to receive the next event. If no event is available, the
application blocks the send process, which enables other applications to run. If no
other applications have events to process, the application puts the CPU in a standby
state until the next event, such as the expiration of a timer, restarts the application.

RimGetMessage() can be called from anywhere within an application. Applications
might process messages differently depending on the screen and context of the
message. The same application might process the same messages differently
depending upon the message context.

To process some events in the same way, regardless of the stage of the application,
call RimRegisterMessageCallback(). It registers a function to be called for specific
types or classes of messages. These functions are called when the main part of the
application is blocked on RimGetMessage().

Applications can also exchange messages among their own threads or with other
applications. Exchanging messages has an advantage over function calls: when one
application calls into another application, the task ID remains the task ID of the
calling application. Anything that causes a message to be sent subsequently is sent to
the calling application, instead of the called applications.

When sending messages between applications, the Device field can be set to one of
the system device events. (The macro DEVICE_USER can be used for application
messages.) If one of the events is specified, the protocol defined here should be
maintained.

Non-blocking and blocking messages

Messages can be sent from one task to another asynchronously or synchronously. In
both cases, the receiving task deals with previous events in its message queue before
dealing with the new message.

� If the message is sent asynchronously (with RimPostMessage), the sending process
does not block and immediately continues execution.

Inter-process communication

Programming Guide 69

� If the message is sent synchronously (with RimSendMessage), the sending process
blocks until the receiving process processes the event. The sending process does
not unblock no more events are in the queue for the receiving process.

When the destination process deals with a synchronous message, it might involve
calling other functions (including RimTaskYield()). To return information to the
sending process, an application can set up a convention of pointing to a specific
location. While the receiving process is processing the message, it should place the
results in that location. When the sending application unblocks and returns from
RimSendMessage(), it can use the saved results.

Sending synchronous messages fails if the task ID is invalid or if the destination task
is waiting for another task to receive a message. In this case, the RimSendMessage()
function returns an error immediately.

Foreground and background
The handheld application server supports multiple threads, as well as multiple
applications. Each application on the handheld receives an execution thread at
startup. Applications can also create and destroy additional threads dynamically.

Applications co-operatively multitask. At no time can slicing or pre-emption occur
between applications. Such a design simplifies application development as it removes
the need for mutual exclusion mechanisms and semaphores. However, if a task
performs an operation that takes several seconds, it is recommended that the
application yield control to other applications periodically so that the handheld does
not appear to stop working.

Each thread can run in the foreground or background. A foreground thread can
assume control of the display and input; a background thread has no display access.
By default, applications are brought to the foreground and threads that are created by
RimCreateThread() are not.

The display context of the foreground task, including its display bitmap, is shown on
the LCD, and receives all keypad and trackwheel input. Each background thread still
maintains a copy of the LCD display bitmap in its display context and can manipulate
it at any time. When the foreground is changed to a different thread or task, the new
task�s display bitmap is placed on the LCD, and it now receives all keypad and
trackwheel input.

When the foreground is switched from one application to another, the new
foreground application receives a SWITCH_FOREGROUND message, and the previous
foreground application receives a SWITCH_BACKGROUND message.

Applications can switch the foreground thread by calling RimRequestForeground() to
request that a new application be placed on the foreground.

Note: Although the OS prevents deadlock from occurring, be careful when sending
synchronous messages because tasks are blocked until the receiving application receives the
message.

Chapter 6: Operating system services

70 BlackBerry Software Development Kit

File system services
The File System API provides a simplified abstraction to the handheld�s persistent
memory hardware. It protects the persistent data of each application from malicious
or careless destruction by other applications.

The handheld file system is different from traditional file systems:

� Non-volatile data is stored in flash memory, using a log-structured file system.

� The file system is presented in database terms. Files are called databases.
Database records are equivalent to file records. Records are not a fixed length.
File system functions begin with Db.

� You can use streamed file functions, which begin with DbFile, to obtain
functionality similar to data streams.

� The file system explicitly provides lookup tables for all of the records in the file
system instead of a traditional memory-mapped file system, so that applications
still have random access to memory.

Flash memory and the file system
Non-volatile data in the file system is stored in flash memory. Flash memory provides
both read and write operations on a flat memory space.

Log-structured file system

The file system uses a log-structured file system to make changes to data. Flash
memory contents are not rewritten in place. Log file systems have the following key
features:

� Changes to data occur sequentially at the end of a continuously growing log.

� When data that already exists in the log is modified, a new copy of the data is
written to the end of the log. The old copy of the data is marked as changed but
left in the log.

� When the file system runs out of space, old segments of the log are cleaned to
make more room for extending the log.

Log file systems are appropriate for the type of usage that is expected on the
handheld, where the file system contains many smaller data items and data is
typically read much more frequently than it is changed.

Reading from the file system

To optimize the speed of reading from the file system, the file system provides a
rudimentary form of read-only memory mapped access. The handheld file system
explicitly provides lookup tables for all of the records in the file system. This

File system services

Programming Guide 71

improves efficiency at the cost of slightly more complexity than traditional
memory-mapped file access. Applications can read directly out of the flash memory
that is used to store the files.

Random access to files

The handheld file system does not use indexing structures for random access.
Searching the file system is performed by sequentially scanning the file from the
beginning. Sequential scanning is efficient for short files because the entire file system
is in flash memory, which is random access readable.

Applications can obtain even faster random read access to a file by keeping an array
of the handles to each record and directly accessing the record through the
memory-mapped mechanism.

Database and streamed file models
The basic abstraction that the file system provides is that of a database�a sequence of
variably sized records.

A database can be created, read, modified and deleted. Individual records can be
appended at the end of a database, and then read, modified, and deleted. Basic
information about databases and records can be retrieved.

Each file consists of a number of separate database entries. Each entry can be nearly
64 KB in size, and can be changed independently. However, the cost of changing a
large database entry is a function of its size, so it is not a good idea to have extremely
large database entries that change frequently. As well, the file system can only have
approximately 6000 handles. Therefore, if the database entries are only 100 bytes in
size on average, the handles are exhausted before flash memory storage space is
exhausted.

The database also has no concept of files being open or closed. Files remain in
memory continuously.

A particular kind of record, called an orphan record, can be created. These records do
not belong to a database, but can be added to a database later.

A streamed file enables you to treat a database as a simple sequence of bytes.
Functions are provided to open streamed file access to a database, read and modify
the data, close the streamed file access and retrieve basic information. An open
streamed file is identified by a unique file number, currently represented as an 8-bit
unsigned number.

Chapter 6: Operating system services

72 BlackBerry Software Development Kit

Memory-mapped file access
Every record and every database in the file system is referenced by a file system
handle. Each file system handle uniquely identifies one piece of data in the file system
and persists for the life of that data. The address and the corresponding data are
located in a record pointer table that is maintained by the file system.

Applications can safely cache these pointers (for example, in register variables), as
long as the values are re-fetched after any operation which might result in a file
system write.

Compiler optimizations, such as removing loop invariants from a loop body (which
can result in the temporary storage of these pointer values) are typically safe. You are
encouraged to explicitly perform such optimization whenever the compiler might fail
to do so (and the operations are safe).

The function DbPointTable returns the address of the record pointer table. Indexing
into this table with the record handle yields a pointer to the actual record. Handles are
represented in 16 bits.

For simplicity, the handle table is statically allocated at compile time. As such, the
sizing of this table is important, as each potential handle consumes 4 bytes of RAM.
The handle table supports about 6000 handles. Because each record has a handle, this
limits the system to 6000 records.

Using pointers to access data

Databases and records are uniquely identified by handles, which persist for the
lifetime of the item on the particular system only. Handles are currently represented
as 16-bit unsigned numbers.

The file system maintains a system-wide table for mapping handles. The
DbPointTable function returns the address of the table. Indexing the table with a
handle yields a pointer to data. For a database handle, the data represents the
database directory entry and, for a record handle, the data is the actual record data.
The table currently has 6144 pointers, which limits the number of records to less than
6144.

Warning: Because records might be moved whenever a portion of the log is cleaned, these
pointers are not guaranteed to persist across any calls to the file system that might result in
writing to the log (including yielding control to other processes). This applies to all items in the
file system, not just the ones to which data is being written.

Note: These pointers are not guaranteed to persist across any operation that might result in a
change to the file system’s permanent data or its organization (such as the cleanup of changed
sectors). This includes file system calls and yielding the thread to others applications.

File system services

Programming Guide 73

Applications can safely continue to use these pointers until any operation occurs
which might result in a change to the file system�s permanent state or its organization.
Compiler optimizations, such as removing loop-invariant code from a loop body,
which might result in the temporary storage of these pointer values, are usually safe.
Pointers into flash memory must be re-read from the handle mapping table after
writing to the file system or yielding control.

To help detect this error quickly, the RIM Wireless Handheld simulator periodically
moves the entire file system, maps the old file system location as invalid, and
readjusts the pointer table accordingly. If pointers are copied from the pointer table
and reused after yielding to the system, they can subsequently point to regions of
memory that have been mapped as invalid. Once these mistakes are trapped, you can
find them using Microsoft Developer Studio, because the relevant code causes a page
fault.

This behavior can be disabled in the simulator using the /T-WY option; however, this
only hides these type of errors.

Using the PointTable edition counter

The OS includes a PointTable edition counter that provides information about the
validity of previously stored pointers, including the number of times that the record
pointer table changes.

The edition counter is a 32-bit unsigned counter. Its value can be read at any time by
calling the DbPointTableEdition function.

When the file system is initialized, the edition counter is set to zero, and it increments
when a valid pointer within the PointTable changes. For example, it increments
whenever a record is deleted or its location is changed by the file system.

After your code performs some changes to the file system and stores some pointers to
records locally, it can store the current value of the edition counter.

Later, your application can compare the saved edition counter value to the current
one. If the values are still the same, stored pointer values are still valid; otherwise, the
stored pointer values might no longer be valid and should be discarded.

Keep in mind the following points:

� The edition counter is initialized to zero when the file system is initialized.

� The edition counter value increments by 1 for each file system function call.

� If the edition counter overflows and wraps around, an application with a very old
value might incorrectly conclude that the counter�s value is the same.

Warning: The edition counter value must be stored after changes are complete.

Chapter 6: Operating system services

74 BlackBerry Software Development Kit

� The edition counter values do not persist when file system stops responding or
the handheld resets.

Do not use the edition counter before the file system initialization completes
successfully. Do not store the edition counter values in files or communicate them
externally to the handheld; they have no meaning out of the context of the current
handheld code that is running.

Example: Using the PointTable

void * * PointTable;
DWORD * currentedition;
DWORD storededition;

PointTable = DbPointTable ();
currentedition = ((DWORD *) PointTable) - 1;

// perform changes to the file system
// get pointers to records and store them locally

storededition = * currentedition;

// do some work, such as change the file system or yield to other
// applications

if (* currentedition == storededition) {
// stored pointers are still valid;

}

else {
// stored pointers might no longer be valid;

}

Data security
The file system attempts to maintain security of data through two strategies:

� Most operations that change permanent data are atomic

� Changes to data are verified

Atomic changes

Most operations that change the permanent data are atomic. For example, record
creation and modification operations are atomic. Being atomic means that a record is
either completely written and made part of a database, or the database is unchanged.
No intermediate state is visible. Data consistency to be preserved if the system stops
responding during the function call.

File system services

Programming Guide 75

Notable exceptions are the DbAndRec function and streamed file access functions,
which are not atomic. Refer to the function descriptions for more information.

Verification of changes

All changes to the file system�s permanent data or its organization are verified by
reading the data after it is written completely to flash memory. If any mismatch is
detected, it is considered a catastrophic failure, and the system is stopped.

Data portability
This file system uses database and record handles for temporary object identification
purposes. Do not store handles (or pointers) in the permanent data. Handles are not
portable because they cannot be copied meaningfully to another system.

File system example
The sample program, which consists of filedemo.c, editfunc.c and popupmenu.c, is
demonstrates how to write applications for the RIM Wireless Handheld, including
using the file system, user input, and graphical output.

The program implements a program that enables the user to enter and recall short
pieces of text. The text is stored in the handheld flash memory file system.

At startup, the sample program calls DbGetHandle() to get the handle of its database.
If the database does not already exist, an empty database is created by this function
call. In either case, the function returns the handle to the database.

Next, the sample program calls its function GetDatabaseHandles(). This function
uses the DbFirstRec() and DbNextRec() to collect all the handles to the database, and
stores them in an array in RAM. The handles are only 16 bit values, so a short integer
array can be used to store the handles to preserve RAM.

After collecting the handles to the database, the program calls DbPointTable() to get
the address of the handle pointer table. A handle is an index into this array of
pointers. This enables the application to access data in the database items without
making function calls into the file system.

The following two statements copy a record with a known handle into RAM:

Size = DbRecSize(HandleNo, TRUE);
memcpy(EditBuffer, PointerTable[HandleNo], Size);

Note: Changes made by the DbAndRec function are only partially verified. The system verifies
that bits are set to 0 as specified by the data mask, but it does not verify that the remaining bits
are unchanged.

Chapter 6: Operating system services

76 BlackBerry Software Development Kit

Use caution when relying on direct pointer access to the file system. The file system
often needs to copy records to modify them. If an application makes calls that write to
the file system, or yield to other applications that might write to the file system (for
example, by calling RimGetMessage() or Sleep()), records might not stay in the same
place. The application should use values from DbPointTable() after any such action.

Chapter 7
Radio
communications

This section provides information on the following topics:

� About the Radio API

� Data packets

� Transmitting packets

� Receiving packets

Chapter 7: Radio communications

78 BlackBerry Software Development Kit

About the Radio API
The Radio API provides packet-level access to the radio network. If your application
only needs to send messages, such as email or fax, use the Messaging API instead.

The Radio API provides simple API functions to send and receive data. You do not
require extensive knowledge of the network to use these function calls, although you
will need to understand the basic structure of a data packet: Mobitex Packet (MPAK)
on the Mobitex network, or Service Data Unit (SDU) on the DataTAC network.

The APIs for sending and receiving packets on both networks are similar, and the
process is identical, even though the names of the APIS and the structures of the data
are different.

This chapter provides an overview of how to send and receive packets on both
networks. Refer to the Radio API Reference Guide for either the Mobitex or DataTAC
network for more information.

Data packets

Programming Guide 79

Data packets
On the Mobitex network, the operating system can build and format MPAK data
packets on behalf of the application. When sending packets over the network, the
application fills in the elements of the header structure, and passes it along with the
data to be sent to the radio subsystem of the operating system. Alternatively, the
application itself can build and format the data packets. The MPAK_HEADER structure is
defined in mobitex.h.

On the DataTAC network, the application must build and format the SDU data
packets. The structure of the data packets varies greatly between network providers.
The SDU_HEADER structure is defined in datatac.h.

Transmitting packets
Before sending data packets, an application must register for radio events by calling
RadioRegister().

To send a packet, an application must call RadioSendSdu() or RadioSendMpak() and
include the information and length of the data to send. A tag number is returned for
each packet submitted to the radio. Once the packet has been transmitted and
acknowledged by the radio network, the handheld returns a MESSAGE_SENT event and
tag number to the application that sent the packet.

If the packet could not be delivered to the radio network (for example, the handheld is
out of a network coverage area), the application receives the notification message
MESSAGE_NOT_SENT along with an error code and tag value number. Refer to the
Radio API Reference Guide for a complete list of errors.

If the packet reaches the network, but the destination is unreachable, the packet is
returned to the handheld and is handled like a new received packet.

It is possible to abort transmission of a packet using RadioCancelSendSdu() or
RadioCancelSendMpak().

The handheld can store internally up to four data packets that are pending for
transmission. To send a small number of data packets, an application can call
RadioSendSdu() or RadioSendMpak() repeatedly, without waiting for previous
packets to be sent. To send many packets, however, the application must send them
one at a time.

Note: Cancelling a packet does not guarantee that it was not sent and received before it was
cancelled.

Chapter 7: Radio communications

80 BlackBerry Software Development Kit

Receiving packets
To receive packets from the network, an application must register to receive radio
events by calling RadioRegister().

When packets are received from the radio network, all registered applications are
notified by the radio MESSAGE_RECEIVED event. Each notified application must retrieve
the packet by calling RadioGetSdu() or RadioGetMpak() before yielding control to the
system. After all registered applications receive the message, the packet is released by
the system.

If an application cannot store a packet that it receives, the application can return the
packet to the system using RadioStopReception. RadioStopReception enables
applications to cancel the reception of packets; however, reception is blocked for all
applications, and the modem informs the network that it is no longer ready to receive
packets.

The effect of RadioStopReception() can be reversed by calling
RadioResumeReception(). At this time, the stored packets are received again, and the
handheld informs the network that it is ready to resume receiving packets.

Chapter 8
Writing UI
applications

This section provides information on the following topics:

� Screens

� Menus

� Fields

� Status boxes

� Dialog boxes

� Frequently Asked Questions

Chapter 8: Writing UI applications

82 BlackBerry Software Development Kit

Screens
A screen is a container for a list of fields, displayed vertically. The UI Engine is
responsible for displaying the screen based on the user input and the field that is
selected by the user.

Screen

The user can navigate between fields, typically with the trackwheel. A screen can also
have a title on the first line of the display that is one line in length.

Screen title
Each screen has a title on the first line of the display. The title line should provide
information to users about the current task that they are performing. For example,
when a user performs a search in the Address Book application, the screen�s first line
displays the screen title and the text that the user typed to invoke the search.

Address book screen title

When a user subsequently type A, the screen display the records that start with HA
and the title displays Find: HA.

Address book screen

Note: Some fields can increase when the user adds information, and decrease in size when the
user deletes information from the field.

Menus

Developer Guide 83

Menus
Menus are containers for a set of text elements or menu items. Menus appear on top of
screens and cover approximately three-quarters of the screen width. Menus should be
context-sensitive to the data on the associated screen.

Menu

Invoking a menu

For consistency, clicking the trackwheel always invokes a menu. To select a menu
item, users scroll the trackwheel to select it and then click the trackwheel. A screen is
then displayed based on the menu item selected.

Menu items

The first item on the menu is Hide Menu. The UI Engine places this item at the top of
the menu automatically. When users click Hide Menu, the menu disappears and the
previous screen remains on the display.

Another item on the menu is Cancel. Users click Cancel to stop the current task and
return to the previous screen.

Menu format

A default menu item, which is selected when users open the menu, appears in the
middle of the menu. Menu items that are selected more often by users immediately
surround the default item; items that are selected less often are further away from the
default item.

For example, if the Message List screen is on the LCD display and users click the
trackwheel, the following menu appears:

Note: Cancel might not be applicable in all cases. For example, Cancel does not appear on the
first screen of an application.

Chapter 8: Writing UI applications

84 BlackBerry Software Development Kit

Message List menu

Fields
Fields are objects that are contained in a screen and which accept user data. Fields
take up the width of the display and are typically rectangular.

Edit boxes
Edit boxes are fields typically used to input text data. An edit box has an optional
label (as shown below) and is a field that can grow in size. A cursor is associated with
an edit field and word wrapping is performed automatically.

Edit boxes

Lists
Lists present related items on each line. When a line in the field is selected, the cursor
selects the entire line.

List

Note: The default menu item should not cause irreparable actions, such as loss of data. For
example, the user should not be able to delete an entry or a message by clicking the default
menu item.

Note: The READ_ONLY property enables the application to display a text field that cannot be
changed by user input.

Status boxes

Developer Guide 85

Choice boxes
Choice boxes right justify the data, which is either a value in a numeric range or a
string that is part of an array of strings.

Choice boxes are actually one-line text boxes that always have a label.

Choice boxes

Separators
Separators separate two fields for readability

Separator

Separators are one-line fields that either have a string or bitmap on them. The default
string associated with a separator is a line that is the length of the display. Separators
can never be selected or highlighted.

Status boxes
Status boxes are containers for application text or text and bitmaps. A status box
appears in the middle of the LCD display and is system modal. It does not receive
user input, but the foreground application receives input while the status box is
active. The status box can remain active for a period of time that is definable but
because it visually disrupts the screen display, it is typically used only when
immediate notification is required.

Status box

Chapter 8: Writing UI applications

86 BlackBerry Software Development Kit

Dialog boxes
Dialog boxes are rectangular containers that are application modal and appear in the
middle of the LCD display. A dialog box has three components:

� optional bitmap

� text field that displays information about the dialog box

� a list field, edit field, or choice box field for user input

When the dialog box appears, the field for user input is highlighted.

Dialog box

Controls
Controls are tools such as icons and buttons that the user selects to issue commands.
Keep the number of controls on the display at any one time as small as possible. Too
many controls on the display only emphasize the small size of the display.

Keyboard and trackwheel
As much as possible, try to keep the user from having to move back and forth
between the keyboard and the trackwheel. For example, if users are entering data
with the keyboard, they should not have to use the trackwheel and then return to the
keyboard.

Note: The size of the field can be larger than the LCD display.

Chapter 9
Messaging

This section provides information on the following topics:

� About the Messaging API

� Using the Messaging API

Chapter 9: Messaging

88 BlackBerry Software Development Kit

About the Messaging API
The Messaging API is a programming abstraction for creating a message, sending a
message, adding attachments to a message, and opening and reading a message. The
Messaging API enables developers to use RIM service to send messages. Functionality
for receiving messages is restricted to processing attachments only.

Each task in the system can compose only one message at a time. The call to create a
message allocates the resources and associates the message with the task. The
application adds information to fields, and then queues the message for sending.

Message structure
A message consists of a list of recipient addresses and a body. The body includes the
message text and other optional fields, such as the subject, message ID, and an
attachment. This is not the normal division between address and body for an Internet
email message, but messages sent on the handheld are not necessarily email
messages.

Email messages are always supported, but other types of messages might be
supported by the underlying network. The following types of messages are supported
by the API: email, fax, phone, one-way page, and two-way page. To support other
message types, the network must provide an appropriate message service.

A message body can also contain an attachment, which is an additional file
incorporated into the message. Attachments are frequently binary files that must be
specially interpreted (or �awakened�) at the receiving end. For example, the RIM
Wireless Handheld mail software enables users to attach entries from the Address
Book database.

Attachments
An application can send an attachment with a message. It can also register to read
attachments. After the user receives email with an attachment and opens the
attachment, a callback function that is specified by the registered application is called
to process the attachment.

Attachments are added to a message as a byte stream, and are transmitted with the
rest of the message. On the receiving side, an application can register with the
message application to be notified if a message with a suitable attachment is opened.
After the user opens the message, the registered application receives a callback, which
enables it to access and process the attachment.

Using the Messaging API

Developer Guide 89

Using the Messaging API
This section explains how to use the Messaging API function calls to send a message
successfully. Sample code is taken from the message application in the
app_samples\Message directory of the SDK installation.

The code must include the msg_api.h header file. When the code is built, it must be
linked with the message.lib library. The message.dll file must be installed on the
simulator or the handheld.

There are five steps to sending a message:

1. Create a message (allocate resources).

2. Add recipients (build the recipient list).

3. Add the message text.

4. Add attachment data (optional).

5. Send the message.

Create a message
This step makes the Messaging application aware of your intention to send a message,
and allocates the necessary resources.

This step is just a call to create_message().

// Use as return variable for Boolean functions
bool response;

// create the new message
response = create_message();

Each task can have one associated message that is under construction. Multiple calls
to create_message() destroy the existing message and create a new one.

The call fails if sufficient system resources are not available to create a message.

After a task is created, the call is_composing_message() returns true.

Adding recipients
The recipient list is built at this stage. All recipients must be added individually. The
field_tag can be set to one of TO_FIELD_TAG, CC_FIELD_TAG, or BCC_FIELD_TAG to
indicate where the recipient is to be placed. (For an email message, the Internet
RFC 822 standard requires that an email message have at least one of a TO field or a
BCC field.)

Each recipient is added with a call to add_recipient(). The call returns a MsgHandle
to the modified message.

Chapter 9: Messaging

90 BlackBerry Software Development Kit

In some applications, the recipient might be known; in others, the application uses a
loop to add recipients when a menu item is selected.

// The handle to the current message
DbFieldHandle MsgHandle;

// Add a recipient
MsgHandle = add_recipient(TO_FIELD_TAG, EMAIL,

"address@nosuch.machine.zcom", "Sample Address");

If you must retrieve the field data later, you can use the get_address_data() call.

Adding message text
To build the text of the message, call the add_field_text() function. Your application
can call the add_field_text() function repeatedly; the text that is passed in as a
parameter is added to the existing text message.

In other words, you can build your message one sentence at a time by repeated calls to
this function, or you can simply set the text pointer to point at an entire paragraph at
one time. This flexibility is useful if, for example, your application has to accomplish
various amounts of real-time processing with the data as it is being fed into the
application.

Even the subject of your message is added using the add_field_text() call.

// Add the body text to the message
MsgHandle = add_field_text(MESSAGE_FIELD_TAG,

"Hello, this is ample sample text", 33);
MsgHandle = add_field_text(MESSAGE_FIELD_TAG,

"for you to use as an example.", 30);
//Give the message a subject
MsgHandle = add_field_text(MESSAGE_SUBJECT_TAG,

"Some internal rhymes", 21);

At this point, the message is finished. You can send it or add an attachment.

Adding attachment data
Attachments are strung together as a stream of bytes, with no formatting or other
processing that is performed by the messaging application. It is the responsibility of
your application�the calling application�to ensure that the attachment data is
formatted in a manner that is understood by the intended receiving application.

The process for adding an attachment is similar to creating a message:

� Call create_attachment() to ask the system to allocate resources for the
attachment. The type of the attachment is specified in the parameter
content_string. (Other parameters have reasonable defaults.)

Using the Messaging API

Developer Guide 91

� Call add_attachment() to add data to the attachment. As with message text, you
can make multiple calls to add_attachment(); new data is added to the existing
byte stream.

The actual encoding for the attachment is a compressed version of MIME that is
specific to RIM. It assigns byte values to some header texts to shorten the length of the
application header for faster transmission. If the message type is EMAIL, you should
use the strings that are defined for MIME to specify your content_string and
content_string_concatenation. The following sample code demonstrates how to
add an attachment:

// add a text file attachment to the message
MsgHandle = create_attachment("txt", "",

"This is the Attachment Text", 27);

Sending the message
A call to send_message() causes the messaging application to queue the message for
transmission.

The send_message() call has a single parameter, prompt_user_flag. If this parameter
is true, the user is prompted to confirm that the message should be sent. If this
parameter is false, no confirmation is required. In the following sample,
confirmation is not required:

// Send the message
response = send_message(false);

The call queues the message. The system services handle the actual transmission.

Receiving attachments
When an application desires to receive attachments of a certain type, it should call
register_view_attachment_ex(). This call specifies the type of attachment the
application is interested in and the callback function to be invoked to process the
attachment. When the user opens a message which contains an attachment of the
desired type, this callback function is called.

The parameters of this callback function are specified in the
register_view_attachment_ex() function.

The calls get_attachment_data_ex() and register_view_attachment_ex() work
together. The calls get_attachment_data() and register_view_attachment() are
deprecated calls that do similar things; do not mix the extended versions with the
deprecated versions.

Note: An application is not awakened automatically as a result of having received a message
with the correct attachment type. The callback function is only invoked when the user opens a
received message that contains the attachment type.

Chapter 9: Messaging

92 BlackBerry Software Development Kit

Chapter 10
Ribbon and Options

This section provides information on the following topics:

� Ribbon

� Options

Chapter 10: Ribbon and Options

94 BlackBerry Software Development Kit

Ribbon
The ribbon provides visual cues on how to access the full functionality of the
BlackBerry Wireless Handheld. It presents an icon, text hint, and keyboard hotkey for
opening applications.

The ribbon library, ribbon.lib, also includes the API for setting the wireless
handheld�s options.

The ribbon consists of a band of icons on the Home screen. The user uses the
trackwheel to select an icon, and then clicks the trackwheel to open the application.

When the user clicks an icon, the ribbon sends a message to the application that
registered the icon. When the message is received, that application is pushed to the
foreground. If the application is not put into the foreground, the ribbon forces it there,
in the event that a message was missed or lost.

Using the Ribbon API
If you are working in Microsoft Developer Studio, on the Project menu, click Settings.
The Settings window appears. Click the Link tab. In the Object/Library Modules
field, add ribbon.lib just before libc.lib.

To add your application to the ribbon, perform the following steps:

1. Add #include <ribbon.h> to the beginning of your program.

2. Add ribbon.lib to the list of modules to be linked, before libc.lib.

3. Call the RibbonRegisterApplication() function at the beginning of PagerMain(),
before the program enters the message loop.

4. Your application can return to the ribbon by calling RibbonShowRibbon().

Refer to the Ribbon API Reference Guide for more information.

Ribbon messages
All messages that are sent by the ribbon have the Device ID of DEVICE_RIBBON. All
programming access to the ribbon occurs through the API; no messages are sent
directly to the ribbon.

Message Meaning

RIBBON_GRAB_FOREGROUND The application has been selected to run. It is placed in the
foreground and will start.

RIBBON_HOLSTER_LAUNCH The handheld has been removed from the holster and the
ribbon selects the highest priority application with an active
notify request to run.

Options

Developer Guide 95

Options
The Options application controls the system-wide programming of the handheld
features, such as the date and time, screen and keyboard settings, and notification
options. In addition, an external API is provided to other applications to centralize
their specific options on the main screen. This application, in conjunction with the UI
Engine, can be used as a standalone application.

Chapter 10: Ribbon and Options

96 BlackBerry Software Development Kit

Chapter 11
Database tutorial

This section provides information on the following topics:

� Database class hierarchy

� Features of the Database API

� Setting up a database

� Storing contacts

� Displaying contacts in a list

� Defining another contact view

� Editing a contact

� Displaying a list using different views

� Updating a list

� UI/Database interaction

� Editing a contact

� Adding an email address

� Saving a contact

� Removing an Email field

This section is intended to give an overview of some of the database�s
capabilities. Refer to the Database API Reference Guide for more
information.

Chapter 11: Database tutorial

98 BlackBerry Software Development Kit

Database API classes
The Database API provides data storage capabilities for applications on the RIM
Wireless Handheld. The database library manages flash memory and the file system
for the handheld.

The following class hierarchy describes the relationship of the Database, FlashObject,
and DatabaseView classes.

Database class hierarchy

Database
The Database can store multiple FlashObject (or DatabaseRecord) items. The
database is responsible for saving data to flash memory, and for updating a list of
database views that are attached to it. A Database can be backed up and restored
automatically.

FlashObject
A FlashObject is a fixed-size structure that can store data in a format that is specified
by the developer. It can be thought of as a C structure that can be stored in flash
memory as well as in RAM. A FlashObject is the most efficient way to store data in a
database, but because it does not allow fields to be resized, the size must be fixed at
the time of compilation. Each FlashObject must have an associated structure that is
inherited from FlashObjectData, where the actual data is stored. The FlashObject
can gain access to its data structure by loading the data structure into RAM from flash
memory and saving it to flash memory from RAM.

Database API classes

Developer Guide 99

DatabaseRecord
A DatabaseRecord is another class that can store data. Unlike a FlashObject,
DatabaseRecord fields are dynamically sized. As such, they are best used for data
with lengths that vary at run time, such as character strings. Fields can also be added
to and removed from a DatabaseRecord at run time. Each DatabaseRecord object can
store up to 254 fields at any time, and a field type can be associated with each field.

DatabaseView
Databases can have up to 16 views attached to them. Each view is updated every time
that a record is added, updated or deleted. The following database views are
available:

� DatabaseListView�This view stores an array of record handles. For example, the
message screen uses a ListView to store the handles of the message.

� DatabaseSortedListView�This view stores a sorted array of record handles.

� DatabaseIndexView�This view provides fast lookup of database record handles
that match certain keywords, much like an index to a book. For each record, the
application can insert several keywords into the index. This index is searchable; a
DatabaseIndexSearch performs and stores the results of the search.

PersistentStore
A PersistentStore stores a small C-style data structure in flash memory. Example
uses include storing user option settings. PersistentStore data can be backed up and
restored automatically.

DataBuffer
A DataBuffer acts as a simple stream object to store an arbitrary amount of data.

Bitfield
A Bitfield acts as an array of bits. Bit-oriented operations, such as set or clean, can
be performed on individual array entries, or on the array as a whole.

DbrecordBitField
A DbrecordBitField class is derived from the Bitfield class. It provides one bit for
each possible record handle.

Chapter 11: Database tutorial

100 BlackBerry Software Development Kit

Database API features

Data storage
The Database API is well-suited to many applications, especially those that have
complex data management concerns. An Address Book application, for instance, can
contain hundreds of records that must be sorted quickly, and the user must be able to
search through the records without noticing any delay. Applications can define the
the format of the data either statically or dynamically, so almost any application data
can be stored using the Database API.

Memory structure
The flash memory on the RIM Wireless Handheld is shared by all applications that are
running on the handheld. The flash memory is divided into 64-KB blocks, with a strict
limit on the amount of data that can be stored in a single block.

The file system is optimized for handling data stored either as short blocks (less than
80 bytes) or larger blocks (roughly 4 K). If you are designing an application that must
store data in blocks larger than 20 KB, you should consider partitioning the data.

The Database API manages these concerns internally on an application�s behalf. RAM
is used only when necessary, so that other applications will have as much RAM
available as possible. Large blocks of data are subdivided internally in many of the
data structures, so that finding large contiguous blocks of flash memory space
becomes less of a concern.

Compatibility with the UI Engine
The Database API is designed to work as seamlessly as possible with elements of the
UI Engine, such as lists. A database list view, for example, can interact easily with the
handle-based design of the UI Engine list. The view manages a subset of the records
in a database, and the UI Engine list displays only the handles in that subset.

Setting up a database

Developer Guide 101

Setting up a database
Setting up a database is straightforward. In the following example, you will write a
simple Contact Manager application that stores names and associated email
addresses.

To set first name and last name
1. Define a function called set_name.

bool Contact::set_name(const char * first_name_ptr, const char*
last_name_ptr)

{

2. Search for a field with the first name tag using get_first_field_handle.

DbFieldHandle first_name_handle =
get_first_field_handle(FIELDTAG_FIRST_NAME);

3. Update the field contents with the new name.

// first_name_handle is NULL. A new first name field is created.

first_name_handle = update_field(first_name_handle,
FIELDTAG_FIRST_NAME,
first_name_ptr, DB_TEXT);

4. Repeat steps 2 and 3 for the last name tag.

DbFieldHandle last_name_handle =
get_first_field_handle(FIELDTAG_LAST_NAME);

last_name_handle = update_field(last_name_handle,
FIELDTAG_LAST_NAME, last_name_ptr, DB_TEXT);

return(first_name_handle != DB_INVALID_FIELD_HANDLE &&
last_name_handle != DB_INVALID_FIELD_HANDLE);

}

To get first name and last name
1. Define a function called get_name.

bool Contact::get_name(char * & first_name_ptr,
const char * & last_name_ptr)

{

2. Search for a field with the first name tag using get_first_field_handle.

DbFieldHandle first_name_handle =
get_first_field_handle(FIELDTAG_FIRST_NAME);

if(first_name_handle == DB_INVALID_FIELD_HANDLE) {

Chapter 11: Database tutorial

102 BlackBerry Software Development Kit

3. If no first name is found in the record, the return value is NULL.

first_name_ptr = NULL;
}

4. Otherwise, return a pointer to the first name of the record using
get_field_data_ptr.

else {
 first_name_ptr = (char*)

get_field_data_ptr(first_name_handle);
}

5. Repeat steps 2 through 4 for the last_name tag.

DbFieldHandle last_name_handle =
get_first_field_handle(FIELDTAG_LAST_NAME);

if(last_name_handle == DB_INVALID_FIELD_HANDLE) {
last_name_ptr = NULL;

}
else {

 last_name_ptr = (char*)
get_field_data_ptr(last_name_handle);

}
return true;

}

To add an email address
1. Define a function called add_email.

bool Contact::add_email(const char* email_address_ptr,
DbFieldHandle field_handle)

{

2. If field_handle == DB_INVALID_FIELD_HANDLE, add a new email field; if it is
valid, update the existing field.

DbFieldHandle new_email_handle = update_field(field_handle,
FIELDTAG_EMAIL_ADDRESS, email_address_ptr, DB_TEXT);

return(new_email_handle != DB_INVALID_FIELD_HANDLE);
}

To remove an email address
1. Define a function called remove_email.

bool Contact::remove_email(DbFieldHandle email_field_handle)
{

2. Remove the field specified by email_field_handle.

return(delete_field(email_field_handle));
}

Storing contacts

Developer Guide 103

Storing contacts
In this example, you create a database to store Contact objects temporarily during
backup and restore operations.

To store contact objects
1. Declare a Database object at global scope, and a DatabaseBusyStatus object that

the database library will display during any processor-intensive operations, to
inform the user that work is in progress.

DatabaseBusyStatus ContactBusyStatus;
Database GlobalContactDatabase("Contacts", &ContactBusyStatus)

2. Declare a Contact object that the database will use for temporary storage during
backup and restore operations.

Contact GlobalBRContact(GlobalContactDatabase);

3. If the database is to use the backup and restore object that you have created, you
must inform the database that it is available by adding the following line to the
PagerMain function:

GlobalContactDatabase.
set_backup_restore_object_ptr(&GlobalBRContact);

Displaying contacts in a list
You want to display the contact records in a sorted list. An easy way to sort the
contacts would be to have a DatabaseSortedListView. You must define an object that
is derived from DatabaseSortedListView, and implement the compare_objects()
function so that the database library knows how to sort the contacts. In this example,
contact records are sorted by first name.

To sort the contacts
1. Define a function called compare_objects that the database library will call when

objects must be sorted.

int ContactListView::compare_objects(DbRecordHandle
contact_1_handle, DbRecordHandle contact_2_handle)

{

2. Construct the two objects to be compared (in this case named contact_1_handle
and contact_2_handle).

Contact contact_1(GlobalContactDatabase, contact_1_handle);
Contact contact_2(GlobalContactDatabase, contact_2_handle);

Chapter 11: Database tutorial

104 BlackBerry Software Development Kit

3. Retrieve the names of the contacts to compare using get_name.

char * first_name_1, * first_name_2;
char * last_name_1, * last_name_2;
contact_1.get_name(first_name_1, last_name_1);
contact_2.get_name(first_name_2, last_name_2);

4. If the first contact has no first name, and the second contact does, the second
contact should be placed first in the list.

if(first_name_1 == NULL) {
// The first contact has no first name
if(first_name_2 != NULL) {

return 1;
}

 }

5. If the first contact has a first name and the second does not, the first contact
should be placed first in the list.

else {
 if(first_name_2 == NULL) {

// Return < 0 to indicate the first one should go first.
return -1;

}

6. If both contacts have first names, the first names must be compared (if they are
equal, sort based on last name).

else {
int strcmp_result = strcmp(first_name_1, first_name_2);
if (strcmp_result != 0) {
return(strcmp_result);
}

}
}

7. If the contacts have the same first name, sort based on last name in much the same
way.

if(last_name_1 == NULL) {
// The first contact has no last name
if(last_name_2 != NULL) {

return 1;
 }

8. If both last names are NULL, the two contacts are equal.
else {

return 0;
}

 }

9. If the second contact has no last name, the first contact should appear first. Return
a negative value to this.

else {
 if(first_name_2 == NULL) {

return -1;
 }

Defining another contact view

Developer Guide 105

10. If both contacts have last names, compare them and return the result.

else {
 return(strcmp(last_name_1, last_name_2));

}
 }

}

Defining another contact view
In this example, you want to define two views: one that contains all the contacts in the
database, and one that contains only the contacts with email addresses.

To decide whether a contact should appear in the email view, you must implement
the is_view_member function.

To define the email contact view
1. Determine whether a particular contact should be included with the view of

contacts with email addresses.

bool ContactEmailListView::
is_view_member(DbRecordHandle db_record_handle)

{
Contact contact(GlobalContactDatabase, db_record_handle);

2. Search for an email address in the contact record. If there is one, return true,
because you want to include this record in the view.

return(contact.get_first_email() != DB_INVALID_FIELD_HANDLE);
}

Now, you can define user interface elements that correspond to the database elements
you have defined already. Refer to the UI Engine API Reference Guide for information
on that user interface elements that are used in this example.

Chapter 11: Database tutorial

106 BlackBerry Software Development Kit

Editing a contact
In this example, you define a class derived from Edit called ContactEdit that will
keep track of a field handle and a field tag for the Edit field. That way, when the user
enters or edits a contact, the application knows what type of data should be stored in
the field. When the user attempts to remove an email address, for example, the
ContactEdit field knows which field handle must be removed from the
corresponding Contact.

To associate an edit field with a record
1. Construct the Edit buffer. The data in each field can have a maximum length as

specified by the constant MAXLEN_CONTACT_DATA.

ContactEdit(const char* label_ptr,
DbFieldTag tag = DB_INVALID_FIELD_TAG,
DbFieldHandle handle = DB_INVALID_FIELD_HANDLE)
: Edit(label_ptr, MAXLEN_CONTACT_DATA,

MAXLEN_CONTACT_DATA),
m_field_handle(handle), m_field_tag(tag)

 {}

2. Return the field handle that is associated with this edit field.

DbFieldHandle get_field_handle()
{

return(m_field_handle);
}

3. Return the field tag that is associated with this edit field.

DbFieldTag get_field_tag()
{

return(m_field_tag);
}
protected:
DbFieldTag m_field_tag;
DbFieldHandle m_field_handle;

};

You also need a ContactList object, which is derived from the UI Engine List object.
You want to be able to display a list for either one of the views: the view of all
Contacts, and the view of just the Contacts with email addresses. The List object and
the DatabaseListView object are designed to work together easily.

Displaying a list using different views

Developer Guide 107

Displaying a list using different views
To display a particular record on the LCD, UI Engine calls the NowDisplaying
function, passing in the index to the list that corresponds with that record. The
NowDisplaying function must convert the index to a record handle, so you need a
get_handle member function.

This function determine whether all contacts or only email contacts are being
displayed, and returns a handle from the appropriate view.

DbRecordHandle ContactList::get_handle(int index)
{
 if(m_show_all_contacts_flag) {
 return(m_all_view[index]);
 }
 else {
 return(m_email_view[index]);
 }
}

Now you can define the NowDisplaying function. Its main task is to convert a
database record into a string that can be displayed on the LCD.

To display <first name> <last name>
1. Define a function called NowDisplaying.

void ContactList::NowDisplaying(const int index)
{

2. Get the record handle of the contact to be displayed.

DbRecordHandle db_handle_to_display = get_handle(index);

3. Construct the appropriate contact object.

if(db_handle_to_display != DB_NULL_HANDLE)
{

 Contact contact(GlobalContactDatabase, db_handle_to_display);

4. Get the first and last names of the contact, and use RimSprintf() to combine them
into a single string.

char full_name_buffer[MAXLEN_CONTACT_DATA * 2];
char * first_name_ptr, * last_name_ptr;
contact.get_name(first_name_ptr, last_name_ptr);
RimSprintf(full_name_buffer, sizeof(full_name_buffer),

"%s%s%s",
first_name_ptr ? first_name_ptr : "",
first_name_ptr && last_name_ptr ? " " : "",
last_name_ptr ? last_name_ptr : "");

5. Tell the UI Engine to display the string.

PutColumn(full_name_buffer);
}

}

Chapter 11: Database tutorial

108 BlackBerry Software Development Kit

Updating a list
When the number of entries in the list changes (for example, when you add or remove
an item from the view, or when you decide to show email contacts instead of all
contacts), you must update the UI Engine with the new number of entries in the view.

To update a list
1. Define a function called update_num_entries.

void ContactList::update_num_entries()
{

2. Depending on whether you are showing all contacts or just email contacts, tell the
UI Engine how many handles are in the appropriate view.

if(m_show_all_contacts_flag) {
 SetNumEntries(m_all_view.get_num_handles());

}
else {

 SetNumEntries(m_email_view.get_num_handles());
}

3. Tell the UI Engine to Redraw the visible portion of the list in case is has changed.

Redraw();
}

To switch between the views
1. Define a function called show_all.

void ContactList::show_all(bool show_all_contacts)
{

2. Set the show_all_contacts_flag appropriately.

m_show_all_contacts_flag = show_all_contacts;

3. Update the UI Engine and the display.

update_num_entries();
}

UI/Database interaction

Developer Guide 109

UI/Database interaction
To convert a selected item in the list to a database record handle, use the following
code:

list_index = m_contact_list.GetSelectedIndex();
db_handle = m_contact_list.get_handle(list_index);

The contact list screen has menu items that enable the user to switch between the view
of all contacts and email contacts.

To switch between two different views
1. If the user selects the Show all contacts menu item, update the list accordingly.

case CONTACT_LIST_MENU_SHOWALL:
// Show all of the contacts
m_contact_list.show_all();
m_title.SetText("All Contacts");
break;

2. If the user selects the Show Email contacts menu item, update the list
accordingly.

case CONTACT_LIST_MENU_SHOWEMAIL:
// Show only the contacts with an email address

 m_contact_list.show_all(false);
 m_title.SetText("Email Contacts");
 break;

Editing a contact
When the user wants to edit a contact, you need to set up the screen to show the
information that already exists for that contact.

To display a contact’s information
1. Construct a Contact object to modify.

Contact contact(GlobalContactDatabase);

2. Reconstruct the Contact object so that the user can edit it.

if(db_record_handle != DB_NULL_HANDLE) {
 contact.reconstruct(db_record_handle);

3. Populate the name fields on the screen.

char * first_name_ptr, * last_name_ptr;
contact.get_name(first_name_ptr, last_name_ptr);

Chapter 11: Database tutorial

110 BlackBerry Software Development Kit

// Place the names in the name fields
if(first_name_ptr) {

 m_first_name_edit.Insert(first_name_ptr);
}
if(last_name_ptr) {

 m_last_name_edit.Insert(last_name_ptr);
}

4. Enumerate the email fields, and place each one on the screen.
DbFieldHandle email_field_handle = contact.get_first_email();
while(email_field_handle != DB_INVALID_FIELD_HANDLE) {

5. Construct a new contact field to hold the email address.

ContactEdit* contact_edit_ptr = new ContactEdit("Email:",
Contact::FIELDTAG_EMAIL_ADDRESS, email_field_handle);

6. Set the properties of the edit field so that it handles email addresses in an
effective way.

if(contact_edit_ptr) {
 contact_edit_ptr->AddProperties(Edit::CR_TO_ROLL_DOWN |

Edit::EMAIL_FIELD);

7. Insert the field contents into the edit field.

contact_edit_ptr->Insert((char * const)
contact.get_field_data_ptr(email_field_handle));

}

8. Find the next email field. If one exists, proceed to step 5. If not, the screen is
complete.

email_field_handle =
contact.get_next_email(email_field_handle);

}
 }

Adding an email address
To add an email address to the contact, you add a ContactEdit field to the screen with
a field handle of DB_INVALID_FIELD_HANDLE, to indicate that this particular email
address is not saved. When the contact is saved, the email addresses on the screen are
saved with the contact.

To add an email address
1. Create a new field and add it to the screen.

case CONTACT_EDIT_MENU_ADDEMAIL:
 {
 ContactEdit* new_email_ptr = new ContactEdit("Email:",

Contact::FIELDTAG_EMAIL_ADDRESS);

Saving a contact

Developer Guide 111

2. Set the properties of the email field so that it handles email addresses in an
effective way.

if(new_email_ptr) {
new_email_ptr->AddProperties(Edit::CR_TO_ROLL_DOWN |

Edit::EMAIL_FIELD);
AddField(*new_email_ptr);

3. Set the focus to the new field.

SetFieldwithFocus(new_email_ptr);
}
break;

}

Saving a contact
When the user decides to save the contact, you need to extract the contact information
from the fields that are on the screen.

To save a contact
1. If the user selects the Save contact menu item, enter the first and last names in the

edit fields.

case CONTACT_EDIT_MENU_SAVE:
{

 const char * first_name_ptr = m_first_name_edit.GetBuffer();
const char * last_name_ptr = m_last_name_edit.GetBuffer();

2. If the user attempts to save a contact without entering a name, bring up a dialog
box to notify the user, and do not save the record.

if(*first_name_ptr == '\0' && *last_name_ptr == '\0') {
OKDialog ok_dialog("The contact must have a name.");
ok_dialog.Go(m_ui_engine);
break;

}

3. Set the names for the contact.

contact.set_name(first_name_ptr, last_name_ptr);

4. Go through all of the fields on the screen, and add the email addresses that are
stored in the email fields.

Field* field_ptr = GetFirstField();
while(field_ptr != NULL) {

5. If the field is either the first_name or last_name field, it does not contain an email
address, so ignore it.

if(field_ptr != &m_first_name_edit && field_ptr !=
&m_last_name_edit) {

Chapter 11: Database tutorial

112 BlackBerry Software Development Kit

6. When you arrive at an email field, add the address.

ContactEdit* contact_edit = (ContactEdit*) field_ptr;
const char * email_address = contact_edit->GetBuffer();

7. If the email_address field is not empty, add or update the address.

if(email_address != NULL && *email_address != '\0') {
contact.add_email(email_address,

contact_edit->get_field_handle());
 }

}

8. Retrieve the next field on the screen. If one exists, proceed to step 5. If not, the
email addresses have all been added to the record.

field_ptr = GetNextField(field_ptr);
}

9. Save the record with all of the fields.

contact.save();
return;

}

Removing an email field
If the cursor is positioned over an email field, you want to provide a menu item that
enables the user to remove the email field.

To display the Remove Email menu item
1. Retrieve the field where the cursor is currently positioned.

Field* current_field_ptr = GetFieldwithFocus();

2. If it is neither the first or the last name, it must be an email address, so enable the
Remove Email menu item.

if(current_field_ptr != &m_first_name_edit &&
current_field_ptr != &m_last_name_edit) {

m_menu.ShowItem(CONTACT_EDIT_MENU_REMOVEEMAIL);
}

3. If it is the first or last name field, do not show the menu item.

else {
 m_menu.HideItem(CONTACT_EDIT_MENU_REMOVEEMAIL);

}

4. Set the default menu item to Save.

m_menu.SetSelectedIndex(CONTACT_EDIT_MENU_SAVE);

Removing an email field

Developer Guide 113

If the user selects the Remove Email menu item, you must remove the email
address.

If the ContactEdit field has a valid handle, the email address has already been
saved with the record, so you need to remove it from the record and the LCD.

If the field handle is invalid, the email address is not saved, so you only need to
remove it from the display.

To remove an email address from the record
1. If the address is saved in the record, it has a valid field handle, so you want to

remove it from the record.

case CONTACT_EDIT_MENU_REMOVEEMAIL:
{

 ContactEdit* contact_edit = (ContactEdit*) current_field_ptr;
 DbFieldHandle field_handle =

contact_edit->get_field_handle();
 if(field_handle != DB_INVALID_FIELD_HANDLE) {

contact.remove_email(field_handle);
 }

2. In either case, you need to remove the email address from the display.

RemoveField(*contact_edit);
break;

}

Chapter 11: Database tutorial

114 BlackBerry Software Development Kit

Chapter 12
Bitmaps, fonts, and
sounds

This section provides information on the following topics:

� Creating bitmaps

� Converting existing bitmaps

� Creating custom fonts

� Resource .dll files

Chapter 12: Bitmaps, fonts, and sounds

116 BlackBerry Software Development Kit

Creating bitmaps
You can use the bitmap.exe utility to convert a Windows bitmap file into a bitmap
that can be displayed on the handheld. This utility supports any color depth.

Bitmaps in the form of graphics and custom icons can be created and displayed on the
LCD. You can also copy the handheld screen to a buffer in flash memory for future
recall. This is especially useful for preserving displays when switching between
multiple applications that write to the screen.

The maximum size for a bitmap is 256 by 256 pixels. If graphics are larger than this
size, the bitmap.exe utility does not scale the image; it truncates the image and
displays the portion at the top right.

Follow these steps to create bitmaps:

1. Create a definition file. The definition file, which has the .def extension, defines
variables as well as the arrays that make up the bitmap:

� BITMAP_NAME�specifies a unique name for the bitmap header

� STATIC�set to either ON or OFF

A value of OFF specifies that the bitmap to be global to all modules. A value of
ON specifies that the bitmap is visible only to the module or function in which
it is defined.

� type�must be 0 to indicate a monochrome bitmap

� height�height of the bitmap, in decimal

� width�width of the bitmap, in decimal

� end�specifies the end of a bitmap

For example, here are the contents for a file called face.def:

#defineBITMAP_NAME face
STATIC OFF
TYPE=0
WIDTH=16
HEIGHT=16
=
[xxxx]
[xxx xxx]
[x x]
[x x]
[x x]
[x xx xx x]
[x xx xx x]
[x x]
[x x]
[x x]
[x x x x]
[x xx xx x]
[x xxxx x]
[x x]

Converting existing bitmaps

Developer Guide 117

[xxx xxx]
[xxxx]
END

Multiple bitmap definitions can be placed within a single bitmap definition file.

Any non-space character within the data is considered black. A space is white.

Comment lines (/) and preprocessor commands (#) are passed through to face.h.
Assembler-style comments (;) are ignored. Lines beginning with spaces or tabs
are ignored as well.

2. Use the bitmap.exe utility to convert the bitmap definition into a C header file
that can be included with source code. For our example face.def file, the
command line would be:

bitmap face.def face.h [options]

3. Include the bitmap with the C source code. To display the bitmap in your code,
use the LcdCopyBitmapToDisplay function.

The code to use face.h might look like this:

#include "FACE.H"
.
.
.
LcdCopyBitmapToDisplay(&face, 58, 8);

Result:

Converting existing bitmaps
You can use the BMP2DEF.EXE utility to convert existing bitmap files (.bmp) into
definition files. You can then use the bitmap.exe utility to convert the definition file
into a bitmap for the handheld. Refer to "Creating bitmaps" on page 116 for more
information.

1. Convert the bitmap file (.bmp) into a definition file (.def). For example:

bmp2def pgrlogo.bmp pgrlogo.def

Options -mono This option converts monochromatic images with simple thresholding;
recommended for text.

-sf This option specifies to use Steinberg Floyd (diffusion) conversion to
convert to monochromatic color depth; recommended for photographs.

Chapter 12: Bitmaps, fonts, and sounds

118 BlackBerry Software Development Kit

2. Convert the bitmap definition (.def) file into a C header file (.h) so that it is
included with the source code. You can do this by using the bitmap.exe utility
that is included with the SDK.

bitmap pgrlogo.def pgrlogo.h

3. Open the newly created header file and give the bitmap structure a name (for
example, Logo).

4. Include the bitmap with the C source code. The LcdCopyBitmapToDisplay
function enables you to display the bitmap.

#include "pgrlogo.h"
.
.
.
LcdCopyBitmapToDisplay(&logo, 58, 8);

There are some restrictions on the size and type of bitmap that can be loaded:

� Bitmaps must be monochrome. Grayscale or color bitmaps are not supported.

� Bitmaps larger than 132-by-65 pixels will be truncated to 132-by-65 pixels.
Bitmaps taller than 65 pixels will be missing lines from the top, and bitmaps
wider than 132 pixels will be missing columns from the right.

� Bitmaps larger than 256 by 256 pixels are not supported.

� Compressed bitmaps are not supported.

� Bitmaps files (.bmp) created by OS/2 are not supported.

Creating custom fonts
The BlackBerry SDK includes two built-in fonts: 8-line normal and 6-line normal. In
addition to these, you are free to create your own fonts, which are stored in
application code space. (Created fonts are often stored in a resource .dll file. Refer to
"Creating a resource font .dll file" on page 121 for more information.

In addition to displaying individual typesets, custom fonts provide an added degree
of versatility for applications that use icons. For example, you might choose to display
frequently used icons as symbols from a custom font, rather than as bitmaps, when
the icons are to appear aligned on a baseline with text. Fonts can be either
proportional or fixed-width.

The process for creating custom fonts is similar to the process for creating bitmaps.

There is no restriction on the number of different fonts that can be displayed
simultaneously. Each display context has five fonts associated with it, which are
numbered 0 to 4. The default fonts are 8-line normal and 6-line normal.

You can easily incorporate custom fonts by following these steps.

1. Create a definition file for the font. The definition file should have the extension
.def and should contain definitions and values for the following items:

Creating custom fonts

Developer Guide 119

� FONT_NAME�specifies a unique name for the font header

� NAME�specifies the external name of the font (currently not used)

� FIRST and LAST�specifies the first and last characters of the font (they can be
written as the actual character enclosed in apostrophes or written in
hexadecimal format)

� HEIGHT�specifies the fixed height of the font, in decimal format

� PROPORTIONAL� specifies that each character has proportional widths (for
fixed width characters, use WIDTH instead)

� WIDTH�if PROPORTIONAL is not included, specifies the fixed character width, in
decimal format

� underline�specifies, in decimal format, the row from the top on which an
underline should appear

� end�specifies the end of the font definition

There are several ways to start a new character.

Any non-space character within the data is considered black. A space is white.

Comments lines (/) and preprocessor commands (#) are passed through to
SCRIPT.H. Assembler style comments (;) are ignored. Lines beginning with spaces
or tabs are ignored as well.

For example, here is a text file called SCRIPT.DEF:
#define FONT_NAME script
NAME=Script
FIRST=' '
LAST=0x7F
HEIGHT=7
PROPORTIONAL
UNDERLINE=7
;; no space between '=' and character
=' '
[]
[]
[]
[]
[]
[]
[]

Example Description

= ('A') This defines a specific character.

=0x7F This defines an ASCII character using hexadecimal format

=++ This defines the next ASCII character

=- - This defines the previous ASCII character

Chapter 12: Bitmaps, fonts, and sounds

120 BlackBerry Software Development Kit

='!'
[x]
[x]
[x]
[x]
[]
[x]
[]
; advance to next character
=++
[x x]
[x x]
[]
[]
[]
[]
[]
=++
[x x]
[xxxxx]
[x x]
[xxxxx]
[x x]
[]
[]
END

2. Use the lcdfonts.exe utility to convert the font definition into a C header file to
be included with source code in a resource .dll file or an application.

lcdfonts script.def script.h

3. Include the custom font with the C source code. The LcdReplaceFont() and
LcdSetCurrentFont() functions are used to set fonts in the current context.

#include "SCRIPT.H"

if (LcdReplaceFont (0, &script) == LCD_OK)
LcdSetCurrentFont(0)

Resource .dll files
Resource .dll files contain resources such as fonts and sounds but do not contain
executable code. When you download a resource .dll file onto the handheld, the
operating system detects it and keeps a record of all the resources it contains. You can
then access those resources using the API that is provided by the operating system.

Creating a resource .dll file
Generally, to create a resource .dll file, you create a new C file, compile it, and then
link it with ResEntry.obj.

Resource .dll files

Developer Guide 121

For any resource .dll file, the general procedure is as follows:

1. In the C source file for the .dll file, assign a name for the resource to the variable
char *DLLName.

2. Include the header file RESOURCE.H.

3. Include header files that are specific to your resource, such as ResourceFonts.h
for a font resource, Song.h for a tunes resource, and the header files defining
resource itself.

4. Declare other structures or instances of structures as required by the resource.

5. Declare an instance of ResourceStruct. The ResourceStruct accepts the
following arguments:

� type of resource in the .dll file, either RESOURCE_FONT for a font or
RESOURCE_SONG for a tune.

� number of elements in the resource.

� third argument is always 0.

� addresses of the elements defined above.

Follow these guidelines for writing the main C file for a resource .dll file:

� The file must include the header file RESOURCES.H and the header file specific
to the resource that you are using.

� The file should contain a PagerMain() function.

Build the .dll file as you would any RIM application, except link it with ResEntry.obj
instead of OSEntry.obj. Do not link OsEntry.obj with a resource .dll file as this file is
only used with executable applications.

More detailed descriptions for creating font and tunes .dll files appear below.

Creating a resource font .dll file

1. Create a C file and define a name for this .dll file as follows:

char *DLLName = "FontDll";

2. Include the following header files:
#include "resources.h"
#include "ResourceFonts.h"

3. Include the header files for the fonts that you want to include in your font .dll file.

For example, if you have created two font header files (using LCDFONTS.EXE) for
Arial and Times at 8-points high, include this code:

#include "arial8.h"
#include "times8.h"

4. Declare an instance of ResourceFontStruct for each font. Each instance contains
the font name and a pointer to the actual font, which is defined in the font header
files.

ResourceFontStruct Font1 = ("Time", &Time);
ResourceFontStruct Font2 = ("Arial" &Arial);

Chapter 12: Bitmaps, fonts, and sounds

122 BlackBerry Software Development Kit

5. Declare an instance of ResourceStruct. This accepts the following arguments:

� type of resource in this .dll file (use resource_font for fonts)

� number of elements in that resource (in this example, there are 2 fonts)

� the third argument is always 0

� addresses of all font structures defined above

The following sample demonstrates how to create a ResourceStruct:

define NUM_FONTS 2
ResourceStruct ResStruct = {

RESOURCE_FONT,
NUM_FONTS,
0,
{ (void*) &Font1, (void*) &Font2 }

};

Testing the font .dll file

The following code sample demonstrates the use of resource fonts. The code
determines the total number of fonts that are installed using LcdGetNumberOfFonts().
It then loops and prints the name of each font in that font. The font name is obtained
through a call to LcdGetFontName().

const char * fontName;
int numFonts;
int screenOffset = 8;

//Obtain the total number of fonts installed
numFonts = LcdGetNumberOfFonts();

//For each font, make it the current one, and then print its name
for (i = 0; i < numFonts ; i++) {

LcdSetCurrentFont(i);
if (LcdGetFontName(i, &fontName) == LCD_OK){

//Get name
//Display font name
LcdPutStringXY(0, i * screenOffset, fontName, -1, TEXT_NORMAL);

}
}

Creating a resource tunes .dll file

1. Create a C file that defines a name for this .dll file as follows:

char *DLLName = "SongDll";

2. Include the following system header files:
#include "resources.h"

Resource .dll files

Developer Guide 123

#include "Song.h"

The file song.h contains declarations for the NOTE and SONG data structures that
are used to define any tunes that are used on the system.

3. Declare an array of NOTEs that you want to play. Each note is a frequency-duration
pair, for example:

const NOTE MySongNotes [] = {
440, 200,
550, 100,
440, 100,
550, 150,
330, 300,
440, 400

};
const NOTE MyOtherSongNotes [] = {

3000, 100,
2000, 100,
1000, 100,
2000, 100,
3000, 100,
2000, 100,
1000, 100,
2000, 100,

};

4. Define your tune as a SONG structure. A SONG contains three fields:

� number of notes in the tune (which can be determined by using the
length_of macro)

� name that you want to call the tune

� a pointer to the NOTE array that contains the notes that define the tune

For example:

const SONG MySong = {
LENGTH_OF (MySongNotes), "My song", MySongNotes};
const SONG MyOtherSong = {

LENGTH_OF (MyOtherSongNotes), "My song 2",
MyOtherSongNotes

};
};

5. Declare an instance of ResourceStruct. This takes the following arguments:

� type of resource in this .dll file (use resource_SONGs for tunes)

� number of elements in that resource (in this example, there are 2 tunes)

� the third argument is always 0

� addresses of all song structures defined above

For example:

Chapter 12: Bitmaps, fonts, and sounds

124 BlackBerry Software Development Kit

ResourceStruct ResStruct = {
RESOURCE_SONGS,
NUM_SONGS,
0,
{

(void*) &MySong,
(void*) &MyOtherSong

}
};

Testing the tunes .dll file

The following code sample demonstrates the use of resource tunes. The code
determines the total number of tunes that are installed using RimGetNumberOfTunes().
It then loops and both plays and prints the name of each tune. The code then retrieves
the name of each tune through a call to RimGetTuneName().

const char * tuneName;
int screenOffset = 8;
int numTunes;

//Obtain the total number of available tunes
numTunes = RimGetNumberOfTunes();

for (i = 1; i < numTunes ; i++) {
RimAlertNotify (i, 1); //play the tune
RimSleep (50); //pause for a bit
if (RimGetTuneName (i, &tuneName) == TUNE_OK) {

//Display tune name
LcdPutStringXY (0, (i – 1) * screenOffset,
tuneName, -1, TEXT_NORMAL);

}
}

Chapter 13
C library
compatibility

This section provides information on the following topics:

� Summary of C compatibility

� Compatible functions

� Functions that are not compatible

Chapter 13: C library compatibility

126 BlackBerry Software Development Kit

Summary of C compatibility
Only some functions in the compiler C library are safe to call from the RIM Wireless
Handheld environment. The following table summarizes the information.

Function Group Compatible with RIM Wireless Handheld?

Yes No Some

Argument access macros !

Buffer access macros !

Byte classification !

Character classification !

Data conversion !

Debug !

Directory control !

Error and exception handling !

File handling !

Floating point !

Input/output !

Locale dependent !

Memory allocation !

Process and environment control !

Searching and sorting !

String manipulation !

System calls !

Time !

Compatible functions

Developer Guide 127

Compatible functions
This section explains C library functions that are compatible with the RIM Wireless
Handheld.

Argument access macros

This set of functions is compatible with the RIM Wireless Handheld environment.
This includes the macros va_arg, va_start, and va_end.

Buffer manipulation functions

This set of functions is compatible with the RIM Wireless Handheld environment.
This includes memccpy, memchr, memcmp, memcpy, _memicmp, memmove, memset, and _swap.

Data conversion functions

The following data conversion functions can be used in a RIM Wireless Handheld
application: abs, _itoa, _i64toa, labs, _ltoa, strtol, strtoul, __toascii, _tolower,
toupper, _toupper, and _ultoa.

Versions of atoi() and strtol() are found in utilities.lib; refer to utilities.h
for more information.

Searching and sorting functions

The library functions bsearch, _lfind, _lsearch, and qsort should work in the RIM
Wireless Handheld environment. Testing for these functions has not been completed
at this time.

Incompatible functions
These function groups are not compatible, or contain functions that are not
compatible with the RIM Wireless Handheld.

Byte classification (multibyte) functions

The RIM Wireless Handheld does not support multibyte characters.

Character classification functions

Because the RIM Wireless Handheld does not support multibyte or wide characters,
multibyte or wide character functions are also not supported. Many of the other
isxxx() functions and macros are locale-dependent. Different locales have different
sets of uppercase and lowercase characters.

Chapter 13: C library compatibility

128 BlackBerry Software Development Kit

Debug functions

The RIM Wireless Handheld does not support the compiler library debugging
support functions. Other functions are provided to support the debugging of wireless
handheld applications. For example, short debugging messages can be output to the
debug output window when running Microsoft Developer Studio by calling
RimDebugPrintf.

Directory control functions

The RIM Wireless Handheld file system is different from those used on desktop
systems. As a result, the directory control functions are not supported by the RIM
Wireless Handheld.

Error and exception handling functions

The RIM Wireless Handheld environment does not support exception handling.
Serious failures, such as page faults, are handled by the system function
RimCatastrophicFailure, which can be called by application code when an
unrecoverable error is detected.

File handling functions

The RIM Wireless Handheld file system is different from those used on desktop
systems. As a result, the file handling functions are not supported by the RIM
Wireless Handheld.

Floating-point functions

Because the RIM Wireless Handheld has no floating point co-processor and does not
support application handling of traps and exceptions, floating point functions cannot
be used, unless all floating points are implemented by emulation without calls to the
operating system.

The following functions are incorrectly classified as floating point functions, and can
be used: div, labs, ldiv, _lrotl, _lrotr, _max, _min, rand, _rotl, and _rotr.

Input and output functions

Any stream, file, or console input/output functions are not compatible with the RIM
Wireless Handheld environment. The RIM Wireless Handheld environment provides
different mechanisms for keyboard input, LCD output, and file system access.
Because of how they are implemented in the compiler library, this category also
includes sprintf and sscanf. These cannot be used in a RIM Wireless Handheld
application. Use RimSprintf or RimVSprintf instead of sprintf.

The port I/O functions, such as inp and outp, do not cause an error during
compilation, linking, or loading; however, because RIM Wireless Handheld
applications run in a protected environment, calling these functions cause a
protection fault at run time.

Incompatible functions

Developer Guide 129

Locale-dependent functions

The RIM Wireless Handheld environment does not support locales, multibyte
characters, or wide characters; however, it is useful to have many of the locale
dependent functions compatible. These functions were in the C library before the
setlocale function.

Memory allocation functions

The standard C memory allocation functions cannot be used in the RIM Wireless
Handheld environment. Use RimMalloc, RimRealloc, and RimFree instead.

The global C++ operators new and delete can be used. They are translated into calls to
RimMalloc and RimFree respectively. The new operator differs from the standard one
in that, if there is insufficient memory to perform the allocation, it returns a NULL
pointer instead of throwing an exception.

Process and environment control functions

Because the process model of the RIM Wireless Handheld environment is quite
different from that of desktop systems, the compiler C library process and
environment control functions are not applicable.

The functions setjmp and longjmp are also in this class. They are not available because
the library implementations make system calls to perform stack unwinding. You
could write a version of these functions that would work on the RIM Wireless
Handheld, if it is acceptable not to call the destructors of C++ stack objects between
the setjmp and the longjmp.

String manipulation functions

Many of the string manipulation functions are locale dependent or require the use of
malloc. These functions are not supported by the RIM Wireless Handheld
environment.

Some string manipulation functions can be found in the utilities.lib library; refer
to utilities.h for a list. For more information, refer to String Utilities in the System
Utilities API.

Chapter 13: C library compatibility

130 BlackBerry Software Development Kit

System call functions

Windows system call functions cannot be used in the RIM Wireless Handheld
environment. Because of how the handheld operating system allocates application
stacks, Windows functions are not safe to call even when they are running in the
simulator.

Time functions

The RIM Wireless Handheld operating system represents time differently from
desktop systems. As a result, time functions are not compatible with the handheld
environment.

Developer Guide 131

Index
A
and, 64
API, 116

RadioRegister(�), 79
application server, 69
applications

loading, 30
restarting, 49

asynchronous send See inter-process communications
attachments, 88

B
background application

bringing to foreground, 69
backlighting, 37
bitmaps

converting existing, 117
creating, 116
definition file, 117
displaying, 117
maximum size, 116

bitmaps.exe, 117
blocking send See inter-process communications

C
choice boxes, definition, 85
class hierarchy, 98
classes

BitField, 99
database, 98
DatabaseRecord, 99
DatabaseView, 99
DataBuffer, 99
DbrecordBitField, 99
FlashObject, 98
PersistentStore, 99

classes overview, 50
code tutorial

add attachment data, 91
attachment type, 90
messaging, 89

Compiler, 72

compiler optimizations, 72
contacts

adding email, 102, 110
associating fields with records, 106
defining views, 105
displaying, 103
displaying different list views, 107
editing, 106, 109
removing a field, 112
removing email, 102
saving, 111
sorting, 103
storing, 103
switching list views, 108
updating lists, 108

controls, 86
converting existing bitmaps, 117
creating bitmaps, 116
creating fonts, 118

D
database

getting first and last name, 101
setting first and last name, 101
setting up, 101

database / file system
reading, 70
record pointer table, 72, 73
referencing data, 72
using the PointTable edition counter, 73

DbPointTable(), 72
debugging

functions (compatibility), 128
using simulator, 31

definitions
choice boxes, 85
dialog boxes, 86
edit boxes, 84
fields, 84
lists, 84
menus, 83
screens, 82
separators, 85

Index

132 BlackBerry Software Development Kit

status boxes, 85
trackwheel, 82

design guidelines
controls, 86
keyboard, 86
trackwheel, 86

development environment
configuring, 11

device errors
95, 49
96, 49

dialog boxes
definition, 86

dll, 12
DMP files, 42

E
edit fields

definition, 84
events

MESSAGE_RECEIVED, 80
MESSAGE_SENT, 79

events, notification, 79
example programs, 66
exception handling, 128

F
fields, 83�85

choice boxes, 85
definitions, 84
edit boxes, 84
lists, 84
separators, 85

file
streamed, 71

file system
reading, 70
services, 70
terms, 70

files
*.DLL, 35
*.DMP, 42
debug.dat, 20
flash simulation, 42
sdkradio.dll, 35

fixed-width font, 118
flash memory, 50, 70

reading from flash, 50
flash memory allocation log, 42
flash memory file system, 42
flash simulation files, 42
fonts

creating, 118

creating the resource DLL, 121
default fonts, 118
naming, 119
testing the resource DLL, 122

foreground application
sending to background, 69

functions
_lrotl, 128
_lrotr, 128
_lsearch, 127
_max, 128
_min, 128
_rotl, 128
_rotr, 128
bsearch, 127
div, 128
inp, 128
ldiv, 128
outp, 128
qsort, 127
rand, 128
RimFree, 129
RimMalloc, 129
RimRealloc, 129
RimSprintf, 128
RimVSprintf, 128
setlocale, 129
sprintf, 128
sscanf, 128

G
global constructors, 56
graphics services, 115

H
handheld

activating applications, 52
LCD, 52

I
icons, 118

creating, 52
installing the SDK, 10
interface, user, 52
inter-process communications

asynchronous (non-blocking) send, 68
synchronous (blocking) send, 69

invoking a menu, 83

K
keyboard, 86
keypad, 69

Index

Developer Guide 133

L
launching the simulator, 31
lcd size, 37
lcdfonts.exe, 120
lists

defining views, 105
definition, 84
displaying different views, 107
sorting, 103
switching views, 108
updating, 108

log structured file system, 70

M
macros

argument access, 127
locale dependent, 127
RIM_DEFINE_DEPENDENCY, 65
RIM_DEFINE_VERSION, 65

memory
flash, 50
RAM, 50
structure, 100
use, 50

memory mapped file access, 72
menu items

cancel menu item, 83
definition, 83
design, 83
designing, 83
hide menu, 83
invoking a menu, 83

message passing, 68
asynchronous send, 68
synchronous send, 69

MESSAGE_RECEIVED event, 80
MESSAGE_SENT event, 79
messages

structure, 88
supported types, 88

Microsoft Developer Studio, 11
modem

radio simulation control panel dialog box, 37
simulating using a physical modem, 43
simulating using the file system, 44
simulation with rap modem, 43
using the pager as a modem, 44

MPAK
defined, 78

multiple applications, 116
multitasking, 8

N
network, 79, 80

destination out of coverage, 79
non-blocking send See inter-process communications

O
opening

simulator, 31
operating system services

message passing, 68
multiple applications, 69

options
overview, 95

orphan records, 71
OsLoader.exe, 30

P
packet transmission, 40
packets

receiving, 80
transmitting, 79�??

PointTable edition counter, 73
processor, 8
program loader

alloc command, 18
batch command, 18
command line options, 17
dir command, 19
erase command, 19
help command, 20
load command, 20
troubleshooting, 24
ver command, 23
wipe command, 23

proportional font, 118, 119

R
radio

simulation control panel dialog box, 37
radio simulation control panel dialog box

packet transmission section, 40
RadioGetMpak(�), 80
RadioGetSdu(�), 80
RadioResumeReception(�), 80
RadioStopReception(�), 80
RAM, 50
random access to files, 71
reading from the file system, 70
receiving packets, 80
record handle representation, 72
record pointer table, 72

Index

134 BlackBerry Software Development Kit

address, 72
references

RIM documentation, 5
RIM web site, 5

registers, displaying contents of, 45
resource DLLs, 120

creating, 120
creating fonts, 121
creating tunes, 122
testing the font DLL, 122
testing tunes, 124

restarting applications, 49
RFC 822, 89
ribbon

messages, 94
overview, 94
using, 94

ribbon icons See icons, creating, 52
RIM co-operative scheduler, 48
RimCatastrophicAPIFailure(), 21
running the simulator, 30

S
screens

definition, 82
SDK

multi-tasking, 8
processor, 8

sdkradio.dll, 35
SDU

defined, 78
search, 82
sending

data packets, 79
separators

definition, 85
sequence numbering of packets, 79
serial input/output, 40
serial port, 33
simulating

battery environment, 37
holster environment, 37
serial input/output, 40

simulation menu
battery, 37
holster, 37

simulator
applications for full simulation, 35
backlighting, 37
command line options for rap modem, 43
command line switches, 33
data pointer errors, 73
ESCAPE key, 36
integrating with Visual Studio, 31
launching, 31
LCD, 37
opening, 31
registers, displaying contents of, 45
running, 30
simulating using a physical modem, 43
using, 35

simulator.exe, 30
stack size, 57
standard C library

compatible functions, 127
status boxes

definition, 85
streamed file, 71
style guidelines, 86
symbols, 118
synchronous send See inter-process communications

T
tasks

application development, 49
yielding, 49, 69

threads, 49, 69
trackwheel, 69, 82, 86
transmitting packets, 79�??
tunes

creating the resource DLL, 122
testing the resource DLL, 124

U
UI Engine

compatibility with, 100
interaction with, 109

user interface, 52

W
watchpuppy, 49

© 2002 Research In Motion Limited
Published in Canada

	About this guide
	Audience
	Developer support
	Other documentation

	Getting started
	About the BlackBerry SDK
	APIs
	Tools

	Installing the BlackBerry SDK
	System requirements
	To install the BlackBerry SDK
	Directory structure

	Configuring Microsoft Visual Studio
	Project settings
	Creating projects
	Setting project properties

	Loading applications
	Checking .dll files
	Loading applications for testing
	Command options
	ALLOC command
	BATCH command
	DIR command
	ERASE command
	HELP command
	LOAD command
	MAP command
	VER command
	WIPE command
	Troubleshooting

	Deploying applications
	Sample .alx files
	Format of .alx files

	Using the simulator
	About the simulator
	Starting the simulator
	Running the simulator with Microsoft Visual Studio
	Running the simulator in Windows
	Starting the simulator from a command prompt
	Simulator options
	Stopping the simulation
	Exiting the simulator

	Using the simulator
	Simulating battery conditions
	Simulating radio conditions
	Simulating serial I/O
	Simulating pointer trapping behavior
	Simulating the modem
	Using a physical modem
	Using the file system

	Debugging hints

	Programming overview
	Understanding the application environment
	Design considerations

	Operating system
	RIM co-operative scheduler
	Tasks and threads
	Task yielding
	Inter-process communication
	Memory use
	Wireless communications
	User interface

	API hierarchy
	Application development steps

	Writing an application
	Basic program structure
	Defining an entry point
	Program execution life cycle

	Registering the application
	Version string
	Stack size

	Entering the message loop
	Adding the application to the Home screen
	Setting up a basic program structure
	Control flow

	Minimizing memory usage
	Minimize the amount of SRAM
	Free dynamic memory
	Minimize stack space

	Defining version information
	Other example programs

	Operating system services
	Inter-process communication
	Message passing
	Foreground and background

	File system services
	Flash memory and the file system
	Database and streamed file models
	Memory-mapped file access
	Data security
	Data portability
	File system example

	Radio communications
	About the Radio API
	Data packets
	Transmitting packets
	Receiving packets

	Writing UI applications
	Screens
	Screen title

	Menus
	Fields
	Edit boxes
	Lists
	Choice boxes
	Separators

	Status boxes
	Dialog boxes
	Controls
	Keyboard and trackwheel

	Messaging
	About the Messaging API
	Message structure
	Attachments

	Using the Messaging API
	Create a message
	Adding recipients
	Adding message text
	Adding attachment data
	Sending the message
	Receiving attachments

	Ribbon and Options
	Ribbon
	Using the Ribbon API
	Ribbon messages

	Options

	Database tutorial
	Database API classes
	Database
	FlashObject
	DatabaseRecord
	DatabaseView
	PersistentStore
	DataBuffer
	Bitfield
	DbrecordBitField

	Database API features
	Data storage
	Memory structure
	Compatibility with the UI Engine

	Setting up a database
	To set first name and last name
	To get first name and last name
	To add an email address
	To remove an email address

	Storing contacts
	To store contact objects

	Displaying contacts in a list
	To sort the contacts

	Defining another contact view
	To define the email contact view

	Editing a contact
	To associate an edit field with a record

	Displaying a list using different views
	To display <first name> <last name>

	Updating a list
	To update a list
	To switch between the views

	UI/Database interaction
	To switch between two different views

	Editing a contact
	To display a contact’s information

	Adding an email address
	To add an email address

	Saving a contact
	To save a contact

	Removing an email field
	To display the Remove Email menu item
	To remove an email address from the record

	Bitmaps, fonts, and sounds
	Creating bitmaps
	Converting existing bitmaps
	Creating custom fonts
	Resource .dll files
	Creating a resource .dll file

	C library compatibility
	Summary of C compatibility
	Compatible functions
	Incompatible functions

	Index

