
BlackBerry Software
Development Kit
Version 2.5

Ribbon and Options API Reference Guide

BlackBerry Software Development Kit Version 2.5 Ribbon and Options API Reference Guide
Last revised: 25 June 2002

Part number: PDF-04640-001

At the time of publication, this documentation complies with RIM Wireless Handheld version 2.5.

© 2002 Research In Motion Limited. All Rights Reserved. The BlackBerry and RIM families of related
marks, images and symbols are the exclusive properties of Research In Motion Limited. RIM, Research In
Motion, �Always On, Always Connected�, the �envelope in motion� symbol and the BlackBerry logo are
registered with the U.S. Patent and Trademark Office and may be pending or registered in other countries.
All other brands, product names, company names, trademarks and service marks are the properties of
their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various
patents, including one or more of the following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470;
6,073,318; D445,428; D433,460; D416,256. Other patents are registered or pending in various countries
around the world. Visit www.rim.net/patents.shtml for a current listing of applicable patents.

While every effort has been made to ensure technical accuracy, information in this document is subject to
change without notice and does not represent a commitment on the part of Research In Motion Limited, or
any of its subsidiaries, affiliates, agents, licensors, or resellers.

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Published in Canada

Contents

About this guide.. 5
Related documentation ...5

CHAPTER 1 Ribbon API functions .. 7
Ribbon ...7

Functions..7

CHAPTER 2 Options API functions ... 17
Options ..17

Structures ...17
Functions..18

Index of functions ... 33

Index .. 35

About this guide

The Ribbon and Options application programming interface (API)
contains functions for modifying the handheld�s Ribbon and Device
Options screens and attributes. The Ribbon is the RIM Wireless
Handheld�s Graphical User Interface (GUI). It can contain links to
applications, tools, and web pages.

Related documentation
Before you use this guide, you should be familiar with the following
documentation. These other resources can help you develop C++
applications for the BlackBerry Wireless Handheld.

� BlackBerry SDK Developer Guide

The BlackBerry SDK Developer Guide explains how to use the
BlackBerry SDK, with tutorials and sample code to demonstrate
how to write handheld applications. For additional information,
visit the BlackBerry Developer Zone at http://
www.blackberry.net/developers.

� UI Engine API Reference Guide

This guide includes a complete listing of all structures and
functions used by the UI Engine.

� README.txt

The README.txt file is installed with the BlackBerry Software
Development Kit (SDK). It provides information on any known
issues and workarounds, as well as last-minute documentation
updates and release notes.

About this guide

6 BlackBerry Software Development Kit

Chapter 1
Ribbon API functions

Ribbon
The Ribbon displays all registered applications along with bitmaps in
a functions list on the Home screen. The Ribbon is the base of the RIM
Wireless Handheld user interface; in most cases, to make an
application available to a user, you must place it on the ribbon.

Functions
The following functions are listed alphabetically.

RibbonAddBitmap ... 7
RibbonAddBitmapToElement .. 8
RibbonAddElement ... 8
RibbonGetPrevApplication .. 9
RibbonModifyApplication .. 9
RibbonRegisterApplication .. 10
RibbonRegisterFunction .. 11
RibbonRemoveBitmap ... 12
RibbonSetApplicationString ... 13
RibbonSetBitmap .. 14
RibbonSetCursorPosition .. 14
RibbonSetNextApplication ... 15
RibbonSetPrevApplication ... 15
RibbonShowRibbon ... 15
RibbonUnregisterApplication .. 15

RibbonAddBitmap

Associates ribbon bitmaps (icons) with an application.

const int RibbonAddBitmap(

Chapter 1: Ribbon API functions

8 BlackBerry Software Development Kit

const char * applicationName,
const BitMap * bitmap)

Returns The index into the bitmap array in which the bitmap is placed. If the bitmap array for
the application is full, the return value is �1.

RibbonAddBitmapToElement

Adds a bitmap to an element.

const int RibbonAddBitmapToElement(
const char * applicationName,
const BitMap * bitmap)

RibbonAddElement

Adds an element to the ribbon.

void RibbonAddElement(const BitMap * const bitmapPtr,
int applicationData,
int position,
void (*entry)(void) = NULL,
DWORD stacksize = 0,
TASK task = (TASK)-1)

Parameters applicationName The name of the application to associate with the bitmap.

Bitmap The bitmap resource.

Parameters applicationName The name of the application to associate with this element.

bitmap A pointer to the bitmap for this element.

Parameters bitmapPtr Pointer to the bitmap for this application.

applicationData When the ribbon sends a message to the registering
application, the information in this parameter is included in
the SubMsg field of the message data structure. The same
application can then register multiple icons, if required.

position The position of the new element on the ribbon. In the case of
applications that are set the the same cursor position, the
application that called RibbonSetCursorPosition prevails.
A lower value of position means that the application is
placed to the left. Positions 1 to 20 are reserved.

Ribbon

Ribbon and Options API Reference Guide 9

RibbonGetPrevApplication

Retrieves the name of the application that had focus previous to the current
application.

const char * RibbonGetPrevApplication()

Returns The name of the application that was previously in focus.

Description An application relinquishing focus should call this function to determine which
application should receive focus.

RibbonModifyApplication

Enables an application to change its appearance in the ribbon by updating its bitmap,
changing the application name, or both.

void RibbonModifyApplication(
const char * applicationName,
const BitMap * bitmap,
const char * const newApplicationName)

Returns RibbonModifyApplication has no return value. It always succeeds.

(*entry)(void) Pointer to an entry function for the application.

stacksize The stacksize required by the application.

task The application that is currently running.

Parameters bitmapPtr Pointer to the bitmap for this application.

Parameters applicationName This parameter is the name of the application to modify.
(The string found here is the same as that found in
applicationName of RibbonRegisterApplication.) Only
the thread that has registered its name can modify the
application.
Note: If you are calling this function, make sure that the
string from the applicationName parameter of
RibbonRegisterApplication has any hot key letters
removed. These identifiers are denoted by an ampersand
(&)

bitmap This parameter is a pointer to the bitmap that will replace
the currently displayed bitmap. The maximum bitmap
size is 16 by 16 pixels. This parameter can be NULL.

newApplicationName This parameter is the new name of the application. A hot
key identifier can be used in this string. This parameter
can be NULL.

Chapter 1: Ribbon API functions

10 BlackBerry Software Development Kit

Description RibbonModifyApplication enables changes to the application appearance on the
ribbon. The radio control icon uses this functionality to change its appearance
according to the current state of the radio.

Icon manipulation in RibbonModifyApplication will eventually be removed. Only
use RibbonModifyApplication to modify the name and hot key. To change, add, or
delete bitmaps, use the functions RibbonSetBitmap, RibbonAddBitmap and
RibbonRemoveBitmap.

Currently RibbonModifyApplication does not return a value that indicates where the
new icon was placed. If a new icon is passed in using RibbonModifyApplication, then
the function removes the current icon (if any), adds the new icon, and sets it. The
position of the new icon can be returned (it is guaranteed to always have a position
because the old one is removed) at your request.

RibbonRegisterApplication

Retrieves a bitmap and name so that an application can be displayed in the ribbon.

void RibbonRegisterApplication(
const char * applicationName,
const BitMap * bitmap,
int applicationData,
int position)

Parameters applicationName This string uniquely identifies the application, along with
the task ID of the calling thread. If hot key access to the
application is required, an ampersand (&) can be used to
identify the character that should act as a hot key. If more
than one application registers with the same hot key, the
application with the lowest position starts.

Ribbon

Ribbon and Options API Reference Guide 11

Returns RibbonRegisterApplication has no return value. It always succeeds.

Description To be displayed in the Ribbon, an application must call this function and provide a
bitmap and name. If a bitmap and a name are not provided, they can be taken from
the application PID.

RibbonRegisterFunction

Retrieves a facility for dynamically launching a new application when the ribbon icon
is clicked.

void RibbonRegisterFunction(
const char * applicationName,
const BitMap * bitmapPtr,
int applicationData,
int position,
void (*entry)(void),
DWORD stacksize)

bitmap A pointer to the bitmap to be displayed in the ribbon. The
maximum bitmap size is 16 by 16 pixels. If this parameter
is NULL, then the bitmap stored in the application PID is
used. If the application has not registered a PID, then a
portion of the ribbon display is used (results are
undefined). Refer to the OS API Reference Guide for more
information on PID.

applicationData When the ribbon sends a message to the registering
application, the information in this parameter is included
in the SubMsg field of the message data structure. The same
application can then register multiple icons, if required.

position This parameter determines the application�s position on
the ribbon. In the case of applications that are set to the
same cursor position, the application that called
RibbonSetCursorPosition prevails. A lower position
value means that the application is placed to the left.
Positions 1 to 20 are reserved.

Chapter 1: Ribbon API functions

12 BlackBerry Software Development Kit

Returns RibbonRegisterFunction has no return value. It always succeeds.

Description This method dynamically launches the application when the ribbon icon is clicked.
This new form permits better memory management because the application is not in
memory unless activated by the ribbon.

This function is recommended because it increases the memory resources that are
available to applications by unloading an application after it is no longer in focus. Use
caution, because after the entry point function returns, any stack memory is freed and
associated data lost.

RibbonRemoveBitmap

Removes a bitmap from the application bitmap array.

bool RibbonRemoveBitmap(
const char * applicationName,
const int bitmapPosition)

Parameters applicationName This string (with the task ID of the calling thread) uniquely
identifies the application. If hot key access to the
application is required, an ampersand (&) can be used to
identify the character that should act as a hot key. If more
than one application registers with the same hot key, the
application with the lowest position starts.

bitmapPtr This parameter is a pointer to the bitmap that is to be
displayed in the ribbon. The maximum bitmap size is 16 by
16 pixels. If this parameter is NULL, then the bitmap that is
stored in the application PID is used. If the application has
not registered a PID, then a portion of the ribbon display is
used (results are undefined). Refer to the OS API Reference
Guide for more information on PID.

applicationData When the ribbon sends a message to the registering
application, the information in this parameter is included
in the SubMsg field of the message data structure. The same
application can then register multiple icons, if required.

position The application�s position on the ribbon. In the case of
applications that are set at the same cursor position, the
application that called RibbonSetCursorPosition prevails.
A lower value for position means that the application is
placed to the left. Positions 1 to 20 are reserved.

(*entry)(void) A pointer to an entry function for the application.

stacksize The stacksize required by the application.

Ribbon

Ribbon and Options API Reference Guide 13

Returns True if the bitmap is found and freed; false otherwise.

RibbonSetApplicationString

Display a short string if the application needs user interaction or intervention.

void RibbonSetApplicationString(
const char * const appName,
const char * const string,
const BitMap * const bitMapPtr,
int priority)

Parameters applicationName The name of the application.

bitmapPosition An index into the application bitmap array. The bitmap at
the given index is removed. If equal to �1, all bitmaps in the
array are used.

Parameters appName This parameter identifies the application. (The string found here
is the same as that found in applicationName of
RibbonRegisterApplication.) Only the thread that has
registered its name is allowed to modify the application.
Note: If you are calling this function, make sure that the string
from appName parameter of RibbonRegisterApplication has hot
key identifiers removed. These identifiers are denoted by an
ampersand (&).

string A pointer to a string to be displayed on the Home screen and the
Security screen. A maximum of five characters of the string are
copied into an internal buffer for display. Setting this string to
NULL clears the application display and no messages will be
sent.

bitMapPtr A pointer to a bitmap that is the size of a character. If this points
to a bitmap (that is, is not NULL), the bitmap is displayed instead
of one of the characters in string, limiting string to four
characters. This bitmap is a useful way to display an image that
is not in the standard font set.

priority This parameter determines the relative notification priority.
When the handheld is removed from the holster, a
ribbon_holster_launch message is sent to the application with
the highest priority that has called
RibbonSetApplicationString().

Chapter 1: Ribbon API functions

14 BlackBerry Software Development Kit

Description Using RibbonSetApplicationString before calling Options::NotifyUser enables the
ribbon and options to launch an application as soon as the handheld is removed from
the holster. If the password is set, it must be entered before the
ribbon_holster_launch message is sent.

The application string is displayed in the user alert section of the Home screen.
Applications that need user interaction or intervention can call this function to display
a short string (such as displaying new messages or new alarms on the Ribbon). Only
the highest two priority strings are displayed. If an alert is triggered and then the
handheld is removed from the holster, the highest priority application is launched.

RibbonSetBitmap

Chooses a ribbon bitmap (icon) to display for an application.

const int RibbonSetBitmap(
const char * applicationName,
const int bitmapPosition)

Returns The index of the bitmap used.

Description Use this function to select the ribbon bitmap to display for an application. Passing �1
as the bitmapPosition parameter uses the bitmap that best fits the area allocated for
ribbon bitmaps on the handheld.

RibbonSetCursorPosition

Sets the cursor position.

void RibbonSetCursorPosition(int position)

Parameters ApplicationName The name of the application.

bitmapPosition An index into the bitmap array. If equal to �1, the bitmap
that is used is the biggest bitmap in the array that fits into the
area that is allocated for the device ribbon icons. If equal to
0, a dummy icon is used (it resembles the Folder icon).
Otherwise, the bitmap at the position that is noted is used as
the ribbon icon.

Parameters position The position in which to place the cursor. In the case of applications
that are set at the same cursor position, the application which called
RibbonSetCursorPosition prevails. A lower value of position
means that the application is placed to the left. Positions 1 to 20 are
reserved.

Ribbon

Ribbon and Options API Reference Guide 15

RibbonSetNextApplication

Specifies the next application to launch after the ribbon returns to the foreground.

void RibbonSetNextApplication(const char * const nextAppName)

Description If this function is called, the ribbon launches the application that is named in
nextApplicationName instead of returning to the foreground. The next application
information is only used once, and RibbonSetNextApplication must be called again
to repeat the action.

If a bitmap and a name are not provided, they can be taken from the application PID.

RibbonSetPrevApplication

Specifies the application name string that is returned by a call to
RibbonGetPrevApplication.

void RibbonSetPrevApplication(const char * const prevAppName)

Description Because of dynamic application launching, the application that is losing focus might
want to call this method with its own application name as the parameter. By
specifying the parameter in this way, the application that is gaining focus can
determine to which application to return the focus.

RibbonShowRibbon

Puts the ribbon in the foreground after an application is complete.

void RibbonShowRibbon()

Description The foreground application should call this function when it is ready to return to the
Home screen.

RibbonUnregisterApplication

Removes the calling application from the Home screen.

Parameters nextAppName This parameter is the next application to run after the current
application returns. This string is the same as that found in the
applicationName parameter of RibbonRegisterApplication.)
Only the thread that has registered its name is allowed to
modify the application.
Note: If you are calling this function, make sure that the string
from applicationName parameter of
RibbonRegisterApplication has any hot key identifiers
removed. These identifiers are denoted by an ampersand (&).

Parameters PrevAppName The name of the application to set as the previous application.

Chapter 1: Ribbon API functions

16 BlackBerry Software Development Kit

void RibbonUnregisterApplication(const char * applicationName)

Description Applications that are about to terminate should call RibbonUnregisterApplication to
make sure that they are removed from the ribbon before exiting.

Parameters applicationName Name of the application to remove from the ribbon.
Note: If you are calling this function, make sure that the
string from the applicationName parameter of
RibbonRegisterApplication has any hot key identifiers
removed. These identifiers are denoted by an ampersand
(&).

Chapter 2
Options API
functions

The Options API contains functions that enable you to manage new
and existing entries on the Device Options menu on the handheld, as
well as the internal processes of these menu items.

Options
To include the Options API functions in your programs, you must
include <options.h> in your code.

Structures
The Device Options API uses the following structures.

TZDayInfo ... 17
TZInfo .. 18

TZDayInfo

TZDayInfo is the structure that is used to describe the start or end
date of a shift to Daylight Savings Time.

struct TZDayInfo {
WORD month : 4;
WORD positionOfWeek : 3;
WORD day : 5;
WORD hour : 4;

};

Chapter 2: Options API functions

18 BlackBerry Software Development Kit

TZInfo

TZInfo is the structure that is used to describe a time zone.

structure TZInfo {
unsigned short id;
signed char bias;
TZDayInfo standardDate;
TZDayInfo daylightDate;

};

Functions
The following functions are listed alphabetically.

AddOption .. 19
ConvertTime ... 20
DisplayAlarmFunction .. 20
EnterSecurityPassword ... 20
FormatDate .. 21
FormatDay ... 22
FormatDayDate .. 22
FormatTime ... 22
GetOwnerInformation ... 23

Field Description

month month of shift (1 to 12); o = invalid/absent date

positionOfWeek 0 for set day of month, otherwise 1 to 5 for first to last week of month

day day of week (0 to 6) if positionOfWeek > 0, day of month (1 to 31)
otherwise

hour hour of day (0 to 23)

FIeld Description

id unique identifier for time zone; identifiers are not necessarily consecutive

bias standard bias (in 15 minute units; for example, offset_from_UTC *
60/15 EST = -5 * 60/15)

standardDate date when standard time starts (month = 0 if no DST)

daylightDate date when daylight time starts (month = 0 if no DST)

Options

Ribbon and Options API Reference Guide 19

GetOwnerName ... 23
GetPassword ... 24
NotifyUser ... 24
OptionsEntry ... 24
OptionsGetCurrentTimeZone .. 25
OptionsGetCurrentTimeZoneId .. 25
OptionsGetCurrentTimeZoneInfo ... 25
OptionsGetDSTData .. 25
OptionsGetIndexFromTimeZoneId ... 26
OptionsGetTimeZoneDescriptions .. 26
OptionsGetTimeZoneIdFromIndex ... 26
OptionsGetTimeZoneInfo ... 27
OptionsIsDateInDST .. 27
OptionsIsDaylightSavingsActive ... 27
OptionsIsDaylightSavingsEnabled .. 27
OptionsRegisterTimeChangeCB .. 28
OptionsSetCurrentTimeZone ... 28
OptionsSetCurrentTimeZoneId ... 28
OptionsSetDateTime .. 28
OptionsSetDateTimeDST .. 29
OptionsSetDaylightEnabled ... 29
OptionsSetDaylightSavings .. 29
RegisterApplication ... 29
RegisterNotifyChoice .. 30
RegisterOptions .. 30
RegisterPasswordChange ... 30
RegisterSecurity .. 31
RemoveOption .. 31

AddOption

Adds an option to the options list.

char const * AddOption(
void(*func)(void),
char const * name,
void(*entry)(DWORD) = NULL)

Returns The optionDLL�s title, or NULL if the option failed to register.

Parameters func This callback function is executed when the user selects
name from the options list.

name Specifies the name of the option, displays in the Device
Options list.

(*entry)(DWORD) A pointer to an entry function for the option.

Chapter 2: Options API functions

20 BlackBerry Software Development Kit

Description If your application needs to display or configure its own options as part of the
handheld options set, you can call this function add your application to the
registration list. The name you supply is displayed in the Device Options list. When a
user selects that option, the function is called. For more information, refer to
RemoveOption.

ConvertTime

Converts time to Daylight Savings Time.

bool OptionsConvertTime(TIME & t,
unsigned short tzFrom,
unsigned short tzTo)

Returns The converted time.

DisplayAlarmFunction

This function is only included for binary comapatibility. You should not call this
function.

void DisplayAlarmFunction(int index)

EnterSecurityPassword

Launches the password UI dialog.

int EnterSecurityPassword(
UIEngine & ui,
Screen & screen,
int anchor,
void (*callback)(MESSAGE & msg) = NULL,
int one_try = 0,
int allow_exit = 1)

Parameters t A pointer to the time to convert.

tzFrom The time zone of t.

tzTo The time zone to which to convert t.

Parameters ui A reference to an initialized UI Engine.

screen A reference to a screen UI component.

anchor The dialog anchor point on the y-axis, in pixels.

Options

Ribbon and Options API Reference Guide 21

Returns An integer corresponding to one of the following fields.

FormatDate

Formats the date passed in the TIME structure according to the current user settings
and puts the result into the supplied buffer.

void FormatDate(
TIME * date,
char * buffer,
int form)

(*callback)(MESSAGE & msg) A pointer to a callback function that the
password process calls if it receives a message
while active that it cannot handle.

one_try Indicates whether the password dialog box
should stay active after a failed attempt. If set to
true, the dialog box exits if the user enters an
incorrect password on the first try. The failed
attempts counter is not increased.

allow_exit If set to 0, the password dialog box does not exit
until the user has entered the correct password.
Full security measures are in place in this case,
that is, if the user fails 10 times, critical
resources are erased to avoid compromising
data.

Field Value

PASSWORD_USER_OK 1

PASSWORD_FAILED 0

PASSWORD_ABORTED -1

PASSWORD_ERASED -2

Parameters date A pointer to the date.

buffer Specifies the buffer in which to store the formatted date.

form The form, either FORMAT_SHORT (for example, �2001/01/31�) or
FORMAT_LONG (for example, �January 31, 2001�).

Chapter 2: Options API functions

22 BlackBerry Software Development Kit

Description The date and time require a 20-byte buffer length and form is long or short form. If
time is NULL, FormatDate returns the current system time and date.

FormatDay

Formats the date passed in the TIME structure according to the current user settings
and puts the result into the supplied buffer.

void FormatDay(
TIME * time,
char * buffer,
int form)

Description The date and time require a 20-byte buffer length and form is long or short form. If
time is NULL, FormatDay returns the current system date as a day of the week.

FormatDayDate

Formats the day and date passed in the TIME structure according to the current user
settings and puts the result into the supplied buffer.

void FormatDayDate(TIME * date,
char * buffer,
int form)

Description The day and date require a 20-byte buffer length.

FormatTime

Formats the time passed in the TIME structure according to the current user settings
and puts the result into the supplied buffer.

void FormatTime(

Parameters time A pointer to the time.

buffer Specifies the buffer in which to store the formatted day.

form The form, either FORMAT_SHORT (for example, �Thu�) or FORMAT_LONG
(for example, �Thursday�).

Parameters date A pointer to the day and date.

buffer Specifies the buffer in which to store the formatted day and date.

form The form, either FORMAT_SHORT (for example, �THU, JAN 24�) or
FORMAT_LONG (for example, �Thursday, January 24th�).

Options

Ribbon and Options API Reference Guide 23

TIME * time,
char * buffer,
int form)

Description The date and time require a 20-byte buffer length and form is long or short form. If
time is NULL, FormatTime returns the current system time.

GetOwnerInformation

Retrieves the owner information for the handheld.

int GetOwnerInformation(
char * buffer,
int len)

Returns The actual length of the OwnerInformation string, including the NULL.

Description GetOwnerInformation copies the current owner information (address, and so on) from
the Owner screen into the supplied buffer.

GetOwnerName

Retrieves the owner name for the handheld.

int GetOwnerName(
char * buffer,
int len)

Returns The actual length of the OwnerName string, including the NULL.

Parameters time A pointer to the time.

buffer Specifies the buffer in which to store the formatted time.

form The form, either FORMAT_SHORT (for example, �2:14p�) or FORMAT_LONG
(for example, �2:14 PM�).

Parameters buffer A pointer to a buffer to which details from the Owner screen are copied.

len The number of bytes, including the terminating NULL, that can be
copied into the buffer.

Parameters buffer A pointer to a buffer to which details from the Owner screen are copied.

len The number of bytes, including the terminating NULL, that can be
copied into the buffer.

Chapter 2: Options API functions

24 BlackBerry Software Development Kit

Description GetOwnerName copies the current owner name from the Owner screen into the
supplied buffer.

GetPassword

Retrieves a hash of the handheld password.

int GetPassword(
unsigned char * hash,
int * length)

Returns A flag indicating the status of the password: 0 indicates the password is disabled, 1
indicates the password is enabled.

NotifyUser

Notifies the user, using a tune, that an event has occurred.

void NotifyUser(
int tune = 0,
int repetitions = -1,
char const * const name = NULL)

Description Call this function when the application needs to signal the user that an event has
occurred. If tune is set to 0, the configured tune is used. This function also gives focus
to the specified application when the handheld is removed from the holster.

OptionsEntry

Adds an options to the options list. Deprecated � use AddOption.

char * OptionsEntry(
void (*func)(void),
char * name)

Parameters hash A pointer to the hashed password.

length A pointer to the length of the password hash.

Parameters tune Tune to play to notify the user. Select from tunes 1 to 6. If set to 0,
the default tune is used, as specified in the notify settings.

repetitions The Number of times to play the tune, if set to �1, the default
number of repetitions is used as specified by the system.

name The name of the application to which to give focus.

Options

Ribbon and Options API Reference Guide 25

OptionsGetCurrentTimeZone

Retrieves the current time zone in character format. Deprecated - use
OptionsGetCurrentTimeZoneInfo.

int OptionsGetCurrentTimeZone()

Returns OptionsGetCurrentTimeZone returns the current time zone in character format.
Acceptable values of time zones range from 120 (GMT +12 hours) to �120 (GMT �12
hours). For example, GMT -3.5 hours is equal to -35. Eastern Standard Time (GMT �5
hours) is represented as �50.

OptionsGetCurrentTimeZoneId

Retrieves unique time zone identifier.

unsigned short OptionsGetCurrentTimeZoneId()

Returns The unique identifier for the current time zone.

Description Each time zone is identified by a unique ID.

OptionsGetCurrentTimeZoneInfo

Retrieves time zone information.

bool OptionsGetCurrentTimeZoneInfo(TZInfo * pInfo)

Returns Time zone information for the current time zone.

OptionsGetDSTData

Retrieves Daylight Savings Time starting and ending times.

bool OptionsGetDSTData(unsigned short tzID,
unsigned int year,
TIME * tStandard,
TIME * tDaylight)

Parameters (*func)(void) This callback function is executed when the user selects name
from the options list.

name Specifies the name of the option, displays in the Device
Options list.

Parameters pInfo Pointer to the time zone information for the current time zone.

Chapter 2: Options API functions

26 BlackBerry Software Development Kit

Description OptionsGetDSTData retrieves the DST start and ending times for a particular time
zone in a particular year.

This function replaces the deprecated OptionsIsDaylightSavingsEnabled.

OptionsGetIndexFromTimeZoneId

Retrieves the position of a time zone in the list of time zone descriptions.

int OptionsGetIndexFromTimeZoneId(unsigned short id)

Returns The position of the time zone in the list of time zone description.

OptionsGetTimeZoneDescriptions

Retrieves a list of time zone descriptions.

const char ** OptionsGetTimeZoneDescriptions()

Description The time zone descriptions are stored internally on the handheld. They cannot be
modified.

Returns The list of time zone descriptions.

OptionsGetTimeZoneIdFromIndex

Retreives the unique identifier for a time zone from the time zone list.

unsigned short OptionsGetTimeZoneIdFromIndex(int index)

Returns The unique identifier of the desired time zone.

Parameters tzID The unique identifier of the time zone.

year The year for which to retrieve DST starting and ending times.

tStandard A pointer to the time in Standard time.

tDaylight A pointer to the time in Daylight Savings Time.

Parameters id The unique identifier of the time zone for which to retrieve the index
position.

Parameters index The time zone position in the list for which to retrieve the unique
identifier.

Options

Ribbon and Options API Reference Guide 27

OptionsGetTimeZoneInfo

Retrieves the time zone information for a time zone.

OptionsGetTimeZoneInfo(unsigned short tzID, TZInfo * pInfo)

Description Call OptionsGetTimeZoneInfo to retrieve time zone information for an arbitrary time
zone. To retrieve the information for the current time zone, call
OptionsGetCurrentTimeZoneInfo.

OptionsIsDateInDST

Determines if a date is running in Daylight Savings Time mode for a time zone.

bool OptionsIsDateInDST(unsigned short tzID, const TIME * t)

Returns True if the date is running in Daylight Savings Time mode; false otherwise.

OptionsIsDaylightSavingsActive

Determines if Daylight Savings Time mode is running.

bool OptionsIsDaylightSavingsActive()

Returns 1 if Daylight Savings Time mode has been enabled on the handheld and is currently
active; 0 otherwise.

Description OptionsIsDaylightSavingsActive determines if the handheld is currently in
Daylight Savings Time mode (that is, between the first Sunday of April until the last
Sunday of October, the handheld is one hour ahead).

OptionsIsDaylightSavingsEnabled

Determines if the handheld is in a time zone where Daylight Savings Time is allowed.
Deprecated - use OptionsGetDSTData.

bool OptionsIsDaylightSavingsEnabled()

Returns 1 if Daylight Savings Time mode has been enabled on the device; 0 otherwise.

Parameters tzID The unique identifier of the time zone for which to retrieve information.

pInfo Pointer to the time zone information to retrieve.

Parameters tzID The unique identifier of the time zone.

t Pointer to the date to query.

Chapter 2: Options API functions

28 BlackBerry Software Development Kit

OptionsRegisterTimeChangeCB

Registers for callback when the system time changes.

bool OptionsRegisterTimeChangeCB(
void (*callback)(int days, int secs))

Returns True if the registration was successful; false otherwise.

OptionsSetCurrentTimeZone

Sets the current time zone. Deprecated - use OptionsSetCurrentTimeZoneId.

bool OptionsSetCurrentTimeZone(char time_zone)

Returns 1 if successful or 0 if unsuccessful.

OptionsSetCurrentTimeZoneId

Sets the unique identifier for the current time zone.

bool OptionsSetCurrentTimeZoneId(unsigned short tzID)

Returns 1 if successful or 0 if unsuccessful.

Description OptionsSetCurrentTimeZoneId switches the handheld to a different time zone, and
adjusts the current time.

OptionsSetDateTime

Sets the date and time.

void OptionsSetDateTime(TIME * NewDateTime)

Parameters (*callback)(int days,
int secs)

A pointer to a void function that accepts two integer
parameters: the days delta and the seconds during
the current day. (For example, a time change that
results in moving the date back 5 days and 30 seconds
corresponds to days = -5 and secs = -30)

Parameters time_zone The time zone that the handheld is to use. time_zone ranges from
120 (GMT +12 hours) to -120 (GMT �12 hours), in half-hour
increments. For example, GMT +1 hour is represented as 2.

Parameters tzID The unique time zone identifier to set.

Parameters NewDateTime A pointer to a TIME structure that is populated with the new time.

Options

Ribbon and Options API Reference Guide 29

OptionsSetDateTimeDST

Sets the date and time if time is adjusted for Daylight Savings Time.

void OptionsSetDateTimeDST(TIME * NewDateTime, bool bInDST)

Description OptionsSetDateTimeDST is useful in instances in which Daylight Savings Time and
standard time overlap.

OptionsSetDaylightEnabled

Enables Daylight Savings Time on the handheld. Deprecated, ignored.

void OptionsSetDaylightEnabled(int enabled)

Description OptionsSetDaylightEnabled enables Daylight Savings Time on the handheld, but
does not change the state of the handheld.

OptionsSetDaylightSavings

Enables applications to put the handheld into Daylight Savings Time. Deprecated,
ignored.

void OptionsSetDaylightSavings(int state)

RegisterApplication

Registers the name and build version of the application to display on the Status screen
of Device Options.

int RegisterApplication(
char * name,
int major,
int minor,
int revision)

Parameters NewDateTime A pointer to a TIME structure that is populated with the new time.

bInDST Boolean indicating if the time is in Daylight Savings Time mode.

Parameters enabled If not set to 0, DST is enabled; if set to 0, DST is disabled.

Parameters state Determines if DST is active. If not set to 0, the state of DST is set to active;
if set to 0, DST is disabled.

Chapter 2: Options API functions

30 BlackBerry Software Development Kit

Returns 1 if successful; 0 otherwise.

RegisterNotifyChoice

Adds an option to the notify menu.

bool RegisterNotifyChoice(Choice * ChoicePtr
const char * ChoiceDescription)

Returns True is successful; false otherwise.

Description RegisterNotifyChoice adds a new option to the Profiles menu on the handheld.

RegisterOptions

Registers a single choice field in one of the Options sections.

int RegisterOptions(
int section,
Choice * field)

Returns 0 if false or 1 if true.

Description This function enables you to add options to the existing options screen.

RegisterPasswordChange

Registers for notification when the password changes.

void RegisterPasswordChange(
void (*func)(unsigned char * hash, int length, int enable))

Parameters name Specifies the name of the application.

major Specifies the major integer (build).

minor Specifies the minor integer (build).

revision The integer that specifies the build version. For example, 1.2.0.0.

Parameters ChoicePtr A pointer to the choice to register.

ChoiceDescription A pointer to the choice description.

Parameters section Specifies the section that is to be registered.

field Specifies the different field choices.

Options

Ribbon and Options API Reference Guide 31

Description Only one application can register to receive notification of password changes. The last
application to call this function is given notification.

RegisterSecurity

Registers application for callback on security failure.

int RegisterSecurity(
void (*func)(void),
char * message)

Returns 1 if registers properly, 0 if does not register properly.

Description Up to 32 applications may register to receive notification on a security failure. After
ten incorrect attempts to enter a password are made, a security failure occurs.

RemoveOption

Removes an option entry from the options list.

void RemoveOption(
void (*func)(void),
char const * name)

Parameters (*func)(unsigned char * hash,
int length, int enable)

This parameter is a pointer to the function to
be called when the password changes. The
function is passed a hash of the password,
the length of the password hash, and a flag
that indicates whether or not security is
enabled (1 == enabled).

Parameters (*func)(void) A callback function if security has failed (such as, an incorrect
password has been entered more than ten times).

message Reserved for future development.

Parameters (*func)(void) A pointer to a function that accepts no parameters. This
pointer must be the same as the one passed to the AddOption
function.

name The name of the option entry item. The same pointer that is
passed to AddOption is expected.

Chapter 2: Options API functions

32 BlackBerry Software Development Kit

Index of functions

Ribbon and Options API Reference Guide 33

Index of functions
O
Option

AddOption(), 19
ConvertTime(), 20
DisplayAlarmFunction(), 20
EnterSecurityPassword(), 20
FormatDate(), 21
FormatDay(), 22
FormatDayDate(), 22
FormatTime(), 22
GetOwnerInformation(), 23
GetOwnerName(), 23
GetPassword(), 24
NotifyUser(), 24
OptionsEntry(), 24
OptionsGetCurrentTimeZone(), 25
OptionsGetCurrentTimeZoneId(), 25
OptionsGetCurrentTimeZoneInfo(), 25
OptionsGetDSTData(), 25
OptionsGetIndexFromTimeZoneId(), 26
OptionsGetTimeZoneDescriptions(), 26
OptionsGetTimeZoneIdFromIndex(), 26
OptionsGetTimeZoneInfo(), 27
OptionsIsDateInDST(), 27
OptionsIsDaylightSavingsActive(), 27
OptionsIsDaylightSavingsEnabled(), 27
OptionsRegisterTimeChangeCB(), 28
OptionsSetCurrentTimeZone(), 28
OptionsSetCurrentTimeZoneId(), 28

OptionsSetDateTime(), 28
OptionsSetDateTimeDST(), 29
OptionsSetDaylightEnabled(), 29
OptionsSetDaylightSavings(), 29
RegisterApplication(), 29
RegisterNotifyChoice(), 30
RegisterOptions(), 30
RegisterPasswordChange(), 30
RegisterSecurity(), 31
RemoveOption(), 31

R
Ribbon

RibbonAddBitmap(), 7
RibbonAddBitmapToElement(), 8
RibbonAddElement(), 8
RibbonGetPrevApplication(), 9
RibbonModifyApplication(), 9
RibbonRegisterApplication(), 10
RibbonRegisterFunction(), 11
RibbonRemoveBitmap(), 12
RibbonSetApplicationString(), 13
RibbonSetBitmap(), 14
RibbonSetCursorPosition(), 14
RibbonSetNextApplication(), 15
RibbonSetPrevApplication(), 15
RibbonShowRibbon(), 15
RibbonUnregisterApplication(), 15

Index of functions

34 BlackBerry Software Development Kit

Index

Ribbon and Options API Reference Guide 35

Index
A
adding

bitmaps, 7
options, 19

API functions
Options, 17
Ribbon, 7

application
registering, 29

B
bitmaps

adding, 7
removing, 12
setting, 14

D
date and time

setting, 28
date formatting, 21
day formatting, 22
daylight savings time, 27
displaying

options entry, 24

E
enabling daylight savings time, 29

F
Formats, 21
formatting

date, 21
day, 22
time, 22

G
getting

owner information, 23
owner name, 23
the current time zone, 25
the previous application, 9

M
modifying applications, 9

N
notifying the user, 24

O
options

adding, 19
displaying the options, 24
registering, 30
removing from options list, 31

P
password

entering, 20
registering change, 30
retrieving hash, 24

R
registering

application, 29
options, 30
password change, 30
time change, 28

registering applications, 10
registering functions, 11
removing

bitmaps, 12
option from options list, 31

ribbon
api functions, 7

S
security

registering, 31
setting

application strings, 13
bitmaps, 14
date and time, 28
daylight savings time, 29
the current time zone, 28
the next application, 15
the previous application, 15

showing the ribbon, 15

T
time formatting, 22

Index

36 BlackBerry Software Development Kit

U
unregistering applications, 15

© 2002 Research In Motion Limited
Published in Canada

	About this guide
	Related documentation

	Ribbon API functions
	Ribbon
	Functions
	RibbonAddBitmap
	RibbonAddBitmapToElement
	RibbonAddElement
	RibbonGetPrevApplication
	RibbonModifyApplication
	RibbonRegisterApplication
	RibbonRegisterFunction
	RibbonRemoveBitmap
	RibbonSetApplicationString
	RibbonSetBitmap
	RibbonSetCursorPosition
	RibbonSetNextApplication
	RibbonSetPrevApplication
	RibbonShowRibbon
	RibbonUnregisterApplication

	Options API functions
	Options
	Structures
	TZDayInfo
	TZInfo

	Functions
	AddOption
	ConvertTime
	DisplayAlarmFunction
	EnterSecurityPassword
	FormatDate
	FormatDay
	FormatDayDate
	FormatTime
	GetOwnerInformation
	GetOwnerName
	GetPassword
	NotifyUser
	OptionsEntry
	OptionsGetCurrentTimeZone
	OptionsGetCurrentTimeZoneId
	OptionsGetCurrentTimeZoneInfo
	OptionsGetDSTData
	OptionsGetIndexFromTimeZoneId
	OptionsGetTimeZoneDescriptions
	OptionsGetTimeZoneIdFromIndex
	OptionsGetTimeZoneInfo
	OptionsIsDateInDST
	OptionsIsDaylightSavingsActive
	OptionsIsDaylightSavingsEnabled
	OptionsRegisterTimeChangeCB
	OptionsSetCurrentTimeZone
	OptionsSetCurrentTimeZoneId
	OptionsSetDateTime
	OptionsSetDateTimeDST
	OptionsSetDaylightEnabled
	OptionsSetDaylightSavings
	RegisterApplication
	RegisterNotifyChoice
	RegisterOptions
	RegisterPasswordChange
	RegisterSecurity
	RemoveOption

	Index of functions
	Index

